
Calculating depth using a Neural Radiance Field
Evan Krainess

krain022@umn.edu
Evan Pochtar

pocht004@umn.edu
Hady Kotifani

kotif004@umn.edu
William Anderson
and09931@umn.edu

I. ABSTRACT

This project investigates the potential of Neural Radiance
Fields (NeRF) for depth estimation, focusing on their ability
to reconstruct 3D scenes and generate high-quality depth
maps from 2D image inputs. Depth estimation is essential
for various applications, including robotics, augmented and
virtual reality, autonomous vehicles, and computer vision.
NeRF offers a promising alternative to traditional depth es-
timation techniques, excelling in generating accurate recon-
structions of complex scenes. The focus of our work was
on improving the implementation and performance of NeRF-
based depth estimation rather than tackling challenges like
sparse imaging or transparent object detection, as explored
by advanced techniques such as SinNeRF and Dex-NeRF.
Instead, we concentrated on reimplementing and optimizing
the TinyNeRF algorithm in PyTorch, which allowed us to
enhance the computational efficiency and quality of depth
outputs.

Key achievements of this project include accelerating the
NeRF algorithm, creating custom functions to generate diverse
depth outputs, and improving the accuracy of these outputs.
Notably, we applied Gaussian blurring to the input data
to mitigate noise and refine depth calculation, resulting in
more precise and visually coherent depth maps. By iteratively
refining our approach, we observed significant improvements
in both computational speed and output quality. Our work
demonstrates how fundamental adjustments, such as enhanced
preprocessing and optimized implementation, can elevate the
performance of NeRF in depth estimation tasks. This study
underscores the practicality of NeRF for generating detailed
depth maps and sets the foundation for future applications in
3D scene reconstruction and beyond.

All code for the project can be found here: NeRF or Nothin
GitHub Repository.

II. INTRODUCTION

In this project, we aim to explore how effectively Neural
Radiance Fields (NeRF) can estimate depth by leveraging their
ability to reconstruct 3D scenes from 2D images. Depth data
is particularly important in fields like robotics, where tasks
such as obstacle detection, navigation, and object manipulation
require an accurate understanding of the 3D structure of the en-
vironment. NeRF’s ability to provide detailed depth maps can
help robots interact with and navigate through complex scenes,
even in situations where traditional sensors struggle, such as
with transparent or reflective surfaces. Beyond robotics, ac-
curate depth estimation has applications in augmented reality

and virtual reality, where understanding the spatial data of
real-world objects is essential for creating immersive expe-
riences. NeRF can also be useful in autonomous vehicles,
where precise depth maps can improve obstacle detection and
path planning. Additionally, in the field of computer vision,
NeRF’s depth data can support tasks like 3D reconstruction,
scene understanding, and object tracking. By testing NeRF’s
performance in these areas, we hope to demonstrate its po-
tential to enhance depth estimation in a variety of real-world
applications, although we will not be making these real-world
applications themself. This is why our project focuses on
building and evaluating a NeRF model to generate accurate
depth maps from 2D images. We plan to capture images of
simple scenes or objects from multiple angles to cover a full
range of perspectives. For these scenes, we will use public
datasets that already include depth information or generate
synthetic data using tools like BlenderNeRF. Once we have
the images, we will train our NeRF model by casting rays
from the camera through each pixel to reconstruct the 3D
scene. NeRF’s ability to simulate how light behaves within
a scene allows it to capture the underlying geometry, from
which we can extract depth information. After training, we
will generate depth maps by querying the model for the depth
at each pixel and compare these maps to the ground-truth data.
By measuring the accuracy with metrics like mean absolute
error, we will evaluate how well NeRF performs in various
scenarios. We aim to experiment with different factors, such as
the number of input images and the complexity of the scenes,
ultimately comparing NeRF’s depth estimation capabilities
with other depth prediction methods.

III. RELATED WORK

A. NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis.

The original paper that introduced the concept of a neural
radiance field is named “NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis.” A Neural Radiance Field
(NeRF) models a 3D scene by taking 5D inputs comprising
a 3D position (x,y,z) and two angles (θ, ϕ) [1]. As output,
the Neural Radiance Field returns a color value (rgb) along
with the volume density σ (opacity). The general process of
a NeRF includes three steps. The first step is to trace camera
rays through a 3D scene to generate points. The second step
is to use those points as input to a multilayer perceptron
(MLP). The third step is to use those densities and colors
to create a 2D image. To ensure multiview consistency in the
MLP, the network can only predict the volume density σ as

https://github.com/Evan-Pochtar/NeRF_or_Nothin
https://github.com/Evan-Pochtar/NeRF_or_Nothin


a function of the location (x,y,z). When predicting the color
value, the MLP has access to all inputs. However, optimizing
the neural radiance field’s representation for complex scenes
is often inefficient and yields suboptimal results. To improve
upon the method, the authors use positional encoding to allow
the MLP to learn higher-frequency functions [1]. It has been
shown that deep networks are biased towards low-frequency
functions; therefore, mapping the input data to a higher-
dimensional space enables the MLP to learn the function
better. Additionally, the authors introduce a technique called
hierarchical sampling. This method addresses the inefficiencies
of sampling each point along a camera ray, as many of these
points will not contribute to the final image. The solution
is to use two networks: a ’fine’ network and a ’coarse’
network [1]. The coarse network uses stratified sampling to
generate a set of points, which are then evaluated. Using these
evaluations, the fine network samples a more focused subset
of points. The final result combines the outputs from both
the coarse and fine networks. The authors reveal that their
model outperforms current methods, demonstrating substantial
improvements in performance over other methods, as mea-
sured by the Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS). The methods NeRF is compared to are
Scene Representation Networks (SRN), Neural Volumes (NV),
and Local Light Field Fusion (LLFF). The paper also provides
a time and space comparison between these methods. LLFF
can compute the scene in 10 minutes, whereas other methods,
such as NeRF, take up to 12 hours. However, the storage space
for LLFF is massive, and NeRF is 3000 times less storage-
intensive [1]. This paper is seminal to our project, and methods
from it will be used extensively to calculate and create depth
maps.

B. ”SinNeRF”: Training Neural Radiance Fields on Complex
Scenes from a Single Image

A new interesting development in NeRFs is using a single
image to train the model. In the paper ”SinNeRF: Training
Neural Radiance Fields on Complex Scenes from a Single
Image,” the authors discuss an approach to accomplish this
task using a new model named SinNeRF. Training a normal
NeRF with sparse imagery will lead to incorrect geometry
and blurry photos [3]. Since traditional NeRFs are prone to
overfitting, the goal of this method is to train on only a
single image, this poses a significant problem. To address
this, the authors build a ”semi-supervised framework.” In
this setup, the output from the NeRF model for the single
available image is treated as the labeled set, while the unseen
views are treated as the unlabeled set [3]. To help the NeRF
model learn the scene’s geometry from a single image, the
authors utilize a depth prior. Additionally, they propagate
information from pixels in the seen view to corresponding
pixels in multiple unseen views through image warping. This
propagation helps the model handle the inherent challenge
of learning 3D geometry from a single view, which would
otherwise lead to overfitting. Through image warping, the

authors are then able to create the depth map of an unseen
view. To account for uncertain regions caused by the warping,
the authors use a self-supervised inverse depth smoothness loss
to smooth the predicted depths. While image warping helps
obtain depth information for unseen views, it doesn’t address
color and texture inconsistencies. To resolve these issues,
the authors propose using a generative adversarial network
(GAN) for local texture guidance, ensuring finer texture details
are preserved. Additionally, they employ a pre-trained Vision
Transformer (ViT) to ensure consistency between the unseen
views and the original image [3]. Using these methods, the
authors show that, compared to other sparse imaging NeRFs,
SinNeRF ”achieves the best results both in pixel-wise error
and perceptual quality” [3]. The authors also demonstrate that
SinNeRF outperforms the other models using the three metrics
from the original NeRF paper (PSNR, SSIM, LPIPS). This
paper presents a novel way to create a NeRF using sparse
imagery and represents a significant development that we will
use in our project.

C. “Dex-NeRF: Using a neural radiance field to grasp trans-
parent objects.”

Another application of NeRFs is the detection of transparent
objects. In the paper “Dex-NeRF: Using a Neural Radiance
Field to Grasp Transparent Objects,” the authors propose the
use of NeRFs in detecting transparent objects so robots can
grasp and manipulate the objects. Traditional depth cameras
assume that objects reflect light uniformly, which does not hold
for transparent objects [16]. The solution proposed in the paper
is a model called “Dex-Nerf,” which is used to sense the ge-
ometry of transparent objects. The generated depth map from
Dex-Nerf is then pipelined for robot-object manipulation–the
pipelining process is not relevant to our study. The inputs are
the same as traditional NeRFs, being the set of images taken
from the camera and the known intrinsic camera properties and
extrinsic position and orientation parameters [16]. Prior work
on detecting transparent objects is “data-driven” and prior
methods used Convolutional Neural Networks, deep-learning
models, or random forests, while “Dex-NeRF does not require
any prior dataset” [16]. The other benefit of NeRFs is that they
output a volume density and view-dependent emitted radiance
at a coordinate that can represent “non-Lambertian effects”
(specularities and reflections) and thus capture the geometry
of transparent objects [16]. The method proposed starts with
a traditional NeRF, training the multilayer perceptron with
“multi-view” RGB images of the scene and the intrinsic
and extrinsic parameters, while error is minimized between
rendered and ground truth rays colors using gradient descent
[16]. NeRFs do not directly support transparent object effects,
but the incorporation of “the viewing direction in its regression
and supervising with view-dependent emitted radiance allows
recovery of non-Labertian effects” like reflections from a
specular surface [16]. During training, “a NeRF model learns a
density σ of each spatial location”. The density represents “the
transparency of the point”. Additionally, the volume density
σ is not view-dependent, so a non-zero value represents that



Fig. 1: Tiny Nerf Data Poses

some color (or physical property) exists at that spatial location.
The raw value σ is then converted to an occupancy probability
bounded by 1 representing distance along a ray; however,
just using the raw value can “determine if a point in space
is occupied” [16] Knowing this, the model searches for a
sample along a ray for which σ, the raw value, is greater
than some value, m, and the depth is then set to the distance
of that sample [16]. Low values of m “result in noise depth”
while higher values result in “holes” or “no detection” of the
transparent object in the depth map. The paper determined an
optimal value of m=15 which resulted in the best detection of
the object [16]. The paper also suggests that adding multiple
light sources to the scene increases the accuracy of the model
because it would result in more specular reflections from more
angles, increasing the value of σ at a certain point [16]. The
results of the paper showed that NeRF could “recover the
geometry of transparent objects” [16].

IV. APPROACH

A. Datasets

Two datasets were used for our analyses. First, we used
a down-scaled version of the lego excavator from the LLFF
dataset. The lego excavator dataset was provided to us by the
Google Berkeley NeRF [1]. This lego excavator was mostly
uniform in color and was set on a transparent background. The
scene in this dataset can be described as a sphere of radius
3. Camera poses were sampled on the positive-Z portion of
the sphere. In other words, only poses showing the top of the
excavator were used. This dataset consisted of 100 samples,
and contained only images rendered in RGB. Throughout
this paper, this dataset may be referred to as the TinyNeRF
dataset since it was the dataset used in the original paper
[1]. This dataset was mostly free from noise, and the original
TinyNeRF converged very quickly with it, with the excavator
being visible after only approximately 100 iterations.

To relinquish concerns about this dataset being optimized
for NeRFs, we decided that it would be best to use additional
datasets. We explored using datasets like NYUv2, KITTI,
and Make3D, but these datasets were too complex for the
compute power that we had access to. This problem made
it very difficult to find a dataset that fit our circumstances. In
our early research, we noticed that many existing NeRFs use
“synthetic data”, or data created by people or a computer. This
differs from real data that would have to be collected in the

Fig. 2: Tiny Nerf Data Example

real world. Generally, Blender is used to generate synthetic
datasets, and it offers a lot of customization. Additionally, a
Blender, BlenderNeRF plugin exists for this purpose [20]. This
plugin contains 3 primary functionalities: subset of frames,
train and test cameras, and camera on sphere (COS). Subset
of frames allows you to follow a camera through an animation
and sample the scene along that camera’s path. Test and train
camera utilizes subset of frames, but runs on two different
cameras to create a test and a train dataset. Lastly, COS allows
you to define a sphere around the scene and take samples along
that sphere. We were most interested in COS, because that
seemed to be the way poses were gathered for most synthetic
NeRF datasets, like the lego excavator. Experimenting with
BlenderNeRF revealed some issues in this approach. First,
Blender is a huge and expansive tool, and none of us had
experience with it. The COS method was mostly automated,
however the process of executing this method was still fairly
involved on the Blender frontend. Additionally, we couldn’t
find documentation about where and how camera poses were
stored within a BlenderNeRF dataset. To compensate for this
and our lack of Blender knowledge, we decided to create our
own custom Python scripts along with bpy, the Blender Python
library, to create our datasets. This was advantageous because
it allowed us to control, very granularly, our sample count,
sample resolution, camera parameters, camera locations, and
output, which included camera poses. Additionally, we were
able to use the Blender compositor, and its Python functions,
to generate Z-pass images. Z-pass is the Blender view layer
that encodes depth from any perspective, so this data could
act as our ground truth. We also created Python scripts to
generate .npz files from our datasets, since this format is how
most NeRFs, and our PyTorch NeRF, would read datasets.
For the scene itself, we used a model from free3d.com with
a personal use license. We tried to select a scene with high
contrast and occlusion of objects from different perspectives.
We settled on a dataset with 4 lego bricks of different colors in
different orientations. A white background was then applied to
ensure that the scene was equally lit. Upon further testing, we
noticed that the NeRF took significantly longer to converge on
our dataset than with the TinyNeRF dataset, so preprocessing
was done. First, we normalized the image. Next, we applied
a Gaussian blur using CV2 in an attempt to reduce noise.



Fig. 5: Custom Data Poses

After this preprocessing, our final dataset was 400 images
of our lego scene, evenly distributed across the positive-z
portion of a sphere centered on the scene. The data was lightly
blurred. Each RGB image had a corresponding, unblurred,
depth image.

Fig. 3: Custom Data RGB
Example

Fig. 4: Custom Data Depth
Example

B. Exploration Process

Our exploration consisted of analyzing, running, testing,
and modifying various NeRF algorithms to understand their
underlying structure, optimize them to run faster on our
machines, and produce accurate depth data on complex scenes
compared to other depth-calculating algorithms. We initially
explored the original NeRF algorithm described in “NeRF:
Representing Scenes as Neural Radiance Fields for View
Synthesis” [1]. This NeRF uses high-resolution images and
scene views–specifically, this NeRF is trained using 100
images with a resolution size of 800 pixels. The approximate
training time for this NeRF is rather long–about 15 hours. An
unexpected difficulty with this specific algorithm, in addition
to training time, was memory use. We used this algorithm
to look at places for improvement and understand the more
complex makeup of the NeRF system. Our next approach was
to explore TinyNeRF, a modified, simplified version of the
original NeRF algorithm that trains with a lower resolution
count of 100 pixels with 100 images. This algorithm runs
faster at about five hours for completion and provides a
good baseline for further optimization. The other benefit of
working with this algorithm is that it ran within the Jupyter
Notebook which allowed ease in re-runability and testing
modifications. Our first modifications for speedup looked at
reducing and eliminating the RGB components (later reverted)
and removing unnecessary functions. For modifications related

to depth estimation, we made modifications to generate depth
maps, depth map interactivity, and test depth estimations.
Developing upon TinyNeRF, we explored DexNerf [16] and
began to integrate its optimized components for speed up since
DexNeRF was shown to have significant speedup compared
to the original NeRF algorithm. Additionally, we recognized
that TinyNeRF was composed of TensorFlow functions and
written in Notebook. As an avenue for speedup, we translated
TinyNeRF from tensorflow to pytorch, using other Pytorch
NeRFs for reference, and ran the algorithm outside of the
notebook. Later, we removed DexNerf integrations which
seemed to cause inaccuracies and slowdowns. For our last
avenue of speedup, we explored NeRFs that could run with
a sparse dataset (fewer images) but found worse results and
abandoned that approach

V. EXPERIMENTS AND RESULTS

A. Speed Up

The original NeRF algorithm takes approximately 15 hours
to run [1], with TinyNeRF taking about three times faster on
CPU. Our first interation upon TinyNERF, without DexNeRF
produced speed up in which our algorithm was 1.4x Faster
than TinyNeRF on GPU and 1.7x Faster than TinyNeRF on
CPU. Our final algorithm, pytorchNeRF without DexNeRF
integration, was 5.4x Faster than our updated TinyNeRF and
1.7x Faster than other Pytorch NeRFs on CPU, and 2.1x
Faster than our Updated TinyNeRF and 1.3x Faster than other
Pytorch NeRFs on GPU.

B. Comparison Algorithms

1) MiDaS: For our experiments, we leveraged MiDaS v2.1
[21]. MiDaS is a deep learning network that specializes in
the prediction of depth maps based on the input of a single
RGB image. MiDaS comes in two different sizes. The large
model prioritizes accuracy over speed. The small model is for
real time applications and prioritizes speed foremost. For our
experiments we used the large model. MiDaS is trained on
multiple datasets and is able to generalize to other images
easily.

2) Stereo: The second comparison algorithm we used
leveraged techniques from stereo vision. Stereo vision is a
method that utilizes 2 different views of a similar scene. By
identifying corresponding points in both images, stereo vision
can compute the corresponding 3D coordinates of those points.
Using stereo we were able to construct a 3D point cloud of
the scene. This method allowed for precise depth estimation
for scenes that have a lot of identifiable correspondences.

C. Performance Evaluation

To evaluate performance quantitatively, we used three met-
rics: Structural Similarity Index Measure (SSIM), Mean Abso-
lute Error (MAE), Mean Squared Error (MSE). SSIM assesses
the overall similarity between images by considering the
structural information and texture. Higher SSIM indicates that
the images are more similar. MAE is used to measure the
average differences between the predicted depth values and



the actual values. MSE is used to measure the average squared
differences between the predicted depth and the actual depth
values. A lower MSE and MAE both indicate that the images
are more similar. We will also evaluate performance on a
qualitative level by inspecting the output of the depth maps to
see which model most correctly represents the actual ground
truth.

D. Experiments

(a) Ground Truth (b) Stereo Vision

(c) MiDaS (d) NeRF

Fig. 6: Comparison of depth maps from Ground Truth, Stereo
Vision, MiDaS, and NeRF.

TABLE I: Error metrics for NeRF, MiDaS, and Stereo Vision.

Method MAE MSE SSIM

NeRF 0.6222± 0.0602 0.4339± 0.0821 0.1200± 0.0378
MiDaS 0.3959± 0.0734 0.2141± 0.0520 0.2556± 0.0846
Stereo Vision 0.7443± 0.1746 0.7116± 0.1759 0.0160± 0.0424

Our experiments involved creating depth maps using the
three outlined methods: NeRF, MiDaS, and Stereo. Using the
dataset outlined earlier, 300 depth maps were created from
each method. Using the three metrics outlined above, we av-
eraged the metrics across all 300 depth maps to produce Table
I. The table shows that our NeRF method for estimating depth
across images underperformed compared to MiDaS. MiDaS
outperforms in all three metrics, showing an improvement of
36% in MAE, 50% in MSE, and 112% in SSIM. However,
NeRF is able to outperform the Stereo method, showing a
20% improvement in MAE, a 64% improvement in MSE,
and an 86% improvement in SSIM. However, qualitatively,

the NeRF model was able to output better images that more
accurately represented the depth of the scene. Looking at Fig.
6, it is apparent that NeRF bears the closest resemblance
to the ground truth. However, this result did not show in
our quantitative results. A possible reason for this is that
the background of the ground truth is white, which could
throw off the error for the metrics and also not align with
the original goal of using metrics to evaluate the quality of
the depth maps. To address this issue, a possible solution
would be to segment the images to ensure that the background
is not interfering with the error. Another issue was that the
background of the dataset is one solid color, which created
noise when it came to the horizon line. There were also issues
in fine-tuning the hyperparameters, which proved challenging
on the custom data. An explanation for the higher error seen
in the Stereo Vision model is most likely due to issues in
finding correspondences between the images. The dataset used
lacks meaningful texture and has a lot of similar pixels,
which did not allow SIFT to find many correspondences. To
further reinforce the idea that, although the MiDaS model
outperformed NeRF quantitatively, it is not indicative of a
better depth representation, observe Fig. 7. The figure shows
that MiDaS is not able to recover the depth of any of the
Lego bricks from the dataset; however, NeRF is able to grasp
those objects and assign a depth to them. The majority of the
MiDaS depth maps were like this, and the quantitative error
was lower since the background was a lighter color, which is
similar to the ground truth background.

width

(a) Ground Truth (b) MiDaS (c) NeRF

Fig. 7: Quantitative comparison of MiDaS and NeRF.

VI. CONCLUSIONS

Our work applies the prior knowledge already developed
for representing scenes as 5D neural radiance fields to pro-
duce depth renders that compete with other traditional depth
approximation approaches. Our approach produced speed up
compared to the traditional NeRF and demonstrated the us-
ability of NeRF systems to produce depth data. Specifically,
the depth data produced a better understanding of the scene
compared to other depth approximation but had mixed results
for error improvements compared to other depth-aproximation
algorithms.

Our work was limited by the computational intensity of run-
ning NeRFs preventing us from working with higher resolution
images and is limited in field usability due to the number of
images required to train the network. New work could further



explore the integration of sparse imaging NeRFs with our
work. Another avenue for future work may also look at the
integration of NeRF-generated depth data into other systems.
Additional work may look into optimizing the runtime of the
system, specifically optimizing for images of higher fidelity.

VII. INDIVIDUAL CONTRIBUTIONS

A. William Anderson

I focused on collecting and creating datasets, as well as
testing the NeRF. I learned how to use Blender to render
images, and I learned quite a bit about bpy, the Blender
Python library. Blender was a big learning curve, and bpy
was very poorly documented. I wrote the scripts in Data
Utils, which took a very long time to create due to bugs
and lack of documentation in bpy. I had difficulty finding the
correct data for camera poses and intrinsics within bpy. I also
learned a lot about data pre-processing. I implemented the
Gaussian blur to speed up convergence in our dataset. I also
did most of the scene-specific model tuning for our dataset,
including finding an adequate number of iterations, model
parameter size, and batch size per iteration. Additionally, I
spent a lot of time testing other NeRFs like “SparseNeRF”,
“pixel-nerf”, and “MultiNeRF”. I was surprised by the amount
of technical knowledge necessary to run, let alone develop, a
NeRF. Complex knowledge of CUDA, virtual environments,
and GPU architecture are necessary to develop a NeRF, so
I felt as if I did a lot more learning and debugging than
developing throughout this project.

B. Evan Pochtar

Evan Pochtar focused on the performance upgrades of the
NeRF algorithm, in this vein, Evan P created the updated
TinyNeRF code, as well as the final Pytorch TinyNeRF code.
Evan P also worked on getting results, such as creating the
code for the comparison MiDaS function, as well as the error
generation code (SSIM, MAE, MSE). Evan P also put some
effort into working on depth optimizations/outputs and hyper-
parameter tuning, as well as doing the writing for the check-in.
For algorithms tested before finally settling down only Pytorch
TinyNerf, Evan tested out “Sparf”, “Neo-360”, “Know-Your-
Neighbors NeRF”, and “dense depth priors nerf”.

Working on this project was definitely a big learning experi-
ence, as it was my first time using neural networks in computer
vision. Rewriting TinyNeRF in both TensorFlow and PyTorch
gave me a solid understanding of how these frameworks
work and the different strengths they offer, as well as being
my first time working in a large project with either of the
languages. PyTorch’s flexibility made it easier to experiment
with changes, while TensorFlow’s structured approach helped
me better understand how neural networks process data. Also
understanding and working through difficulties with my GPU
not accepting tensorflow got me researching a lot about it,
and helped me understand how hardware works with machine
learning a lot more. Testing other algorithms like Sparf,
Neo-360, and Know-Your-Neighbors NeRF showed me how
complex and advanced modern computer vision techniques can

be, and it gave me a lot of insight into their potential and
challenges.

One of the biggest takeaways from this project was realizing
just how compute-heavy these tasks can be, especially when
working with high-resolution images and 3D data. Training
neural networks or improving depth estimations required a lot
of computational power, which made it clear how important
it is to write efficient code and optimize workflows. I also
learned a lot about recent innovations in machine learning
while researching these topics, which gave me a better un-
derstanding of the cutting-edge developments in the field.
Overall, this project was an eye opening experience that taught
me practical skills in neural networks, computer vision, and
problem-solving in computationally demanding code.

C. Evan Krainess

At the beginning of the project I focused on implementing
DeXNeRF in order to create depth maps of transparent images.
We later realized that our project scope was too wide and
decided to narrow it down. I shifted to focusing on the
comparison algorithms and collection of results. I wrote the
Stereo vision algorithm. I created and ran the experiments to
collect the results used in our paper.

This project was a big learning experience for me. I learned
a lot about how to add on to and implement other computer
vision projects such as DeXNeRF. I learned how to read
an academic paper and apply the ideas stated in it to code.
I gained new analysis skills and learned how to consider
both qualitative and quantitative results when judging the
performance of a model. While creating the Stereo vision
method I enjoyed trying out different ideas that were not
discussed in class to see if they would lead to better results.
Overall this project was a lot of fun to do and I learned a lot
about NeRF’s and other depth estimation methods.

D. Hady Kotifani

I focused on running the initial NeRF model and optimizing
and running the original tinyNeRF to work with fewer param-
eters and outputting fewer parameters to focus exclusively on
depth data. My approach ruled out other methods of speed-up
that did not offer speed-up improvement as expected. I also
worked on the initial outputs of depth maps and images.

Through this project, I learned in more detail how machine
learning algorithms work. I learned how to use different Ten-
sorFlow functions and the purpose of several more not having
had any prior experience with TensorFlow. I also learned the
many pains of training machine learning algorithms, especially
with large data sets, how computationally intensive they can
be on different hardware systems, and how time-intensive they
can be. I also learned different ways of working with and
modifying the algorithms, especially since they initially took
very long to train which made it difficult to quickly make
edits and test the edits to see if they work, as well as methods
to work around those. I also learned a lot about how NeRFs
work, how they calculate and produce results, and ways to
modify their usual application.



REFERENCES

[1] B. Mildenhall, et al., “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[2] K. Zhang, et al., “Nerf++: Analyzing and improving neural radiance
fields,” arXiv preprint arXiv:2010.07492, 2020.

[3] D. Xu, et al., “Sinnerf: Training neural radiance fields on complex scenes
from a single image,” in European Conference on Computer Vision,
Cham: Springer Nature Switzerland, 2022.

[4] A. Pumarola, et al., “D-nerf: Neural radiance fields for dynamic scenes,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[5] Y.-C. Guo, et al., “Nerfren: Neural radiance fields with reflections,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[6] A. Yu, et al., “Pixelnerf: Neural radiance fields from one or few images,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[7] Y. Jeong, et al., “Self-calibrating neural radiance fields,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021.

[8] Z. Wang, et al., “NeRF–: Neural radiance fields without known camera
parameters,” arXiv preprint arXiv:2102.07064, 2021.

[9] T. Hu, et al., “Efficientnerf: Efficient neural radiance fields,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[10] A. Yu, et al., “Plenoctrees for real-time rendering of neural radiance
fields,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021.

[11] R. Martin-Brualla, et al., “Nerf in the wild: Neural radiance fields
for unconstrained photo collections,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[12] C.-H. Lin, et al., “Barf: Bundle-adjusting neural radiance fields,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021.

[13] M. Niemeyer, et al., “Regnerf: Regularizing neural radiance fields for
view synthesis from sparse inputs,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

[14] S. Peng, et al., “Animatable neural radiance fields for modeling dynamic
human bodies,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2021.

[15] A. Bergman, et al., “Generative neural articulated radiance fields,”
Advances in Neural Information Processing Systems, vol. 35, pp. 19900–
19916, 2022.

[16] Ichnowski, Jeffrey, et al. ”Dex-NeRF: Using a neural radiance field to
grasp transparent objects.” arXiv preprint arXiv:2110.14217 (2021).

[17] Raafat, M. (2024). BlenderNeRF (Version 6.0.0) [Computer software].
https://doi.org/10.5281/zenodo.13250725

[18] Depth Estimation using Monocular and Stereo Cues, Ashutosh Saxena,
Jamie Schulte, Andrew Y. Ng. In IJCAI 2007.

[19] 3-D Depth Reconstruction from a Single Still Image, Ashutosh Saxena,
Sung H. Chung, Andrew Y. Ng. In IJCV 2007.

[20] Raafat BlenderNeRF 2024, Raafat, Maxime.
https://github.com/maximeraafat/BlenderNeRF

[21] Ranftl, René, et al. ”Towards Robust Monocular Depth Estimation:
Mixing Datasets for Zero-shot Cross-dataset Transfer.” arXiv preprint
arXiv:1907.01341 (2020). Available at: https://arxiv.org/abs/1907.01341.


	Abstract
	Introduction
	Related Work
	NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis.
	"SinNeRF": Training Neural Radiance Fields on Complex Scenes from a Single Image
	“Dex-NeRF: Using a neural radiance field to grasp transparent objects.”

	Approach
	Datasets
	Exploration Process

	Experiments and Results
	Speed Up
	Comparison Algorithms
	MiDaS
	Stereo

	Performance Evaluation
	Experiments

	Conclusions
	Individual Contributions
	William Anderson
	Evan Pochtar
	Evan Krainess
	Hady Kotifani

	References

