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Abstract

We present a targeted investigation into the abil-
ity of fine-tuned small language models (SLMs)
to break mono-alphabetic substitution ciphers.
Using Qwen2.5-0.5B and Phi-4-mini-instruct
as our base models, we generated a bespoke
training corpus by programmatically encrypt-
ing 5,000 “Human vs AI” dataset text sam-
ples with random mono-alphabetic mappings.
We then applied Group-Relative Policy Opti-
mization (GRPO) fine-tuning and evaluated a
novel test-time scaling mechanism designed
to scale performance during inference. Our
experiments measured accuracy using Rapid-
Fuzz similarity (a fuzzy similarity metric), com-
paring GRPO alone as well as GRPO com-
bined with test-time scaling against initial base-
lines. We found that GRPO fine-tuning yielded
improvements in the decryption accuracy of
SLMs on this task. The test-time scaling mech-
anism was evaluated for its ability to reduce am-
biguous substitutions, and its effect on overall
performance is discussed. Our results quantify
the effectiveness and highlight the limitations
of these methods for lightweight cryptanaly-
sis using SLMs, illuminating remaining failure
modes and informing approaches for future re-
search.

1 Problem Definition and Motivation

Our proposed project explores the novel applica-
tion of fine-tuned small language models for cryp-
tographic analysis, specifically mono-alphabetic
substitution ciphers. By adapting Qwen2.5-0.5B, a
lightweight model with just 500 million parameters,
we challenge the assumption that only large models
can excel at complex pattern recognition problems.
This approach is important because it works as a
proof of concept on creating cryptographic tools
that are accessible on resource-constrained devices
like smartphones or similar small gadgets, while
also revealing insights about how neural networks
process and decode symbolic patterns. We tested

this on small reasoning models as well, such as
DeepseekR1-1.5B, to see if chain-of-thought rea-
soning can improve the performance of our system.
We also tested a larger SLM, Phi-4-mini-instruct,
which has about 3 billion parameters, to assess if
increased parameter count can increase the final
accuracy.

The motivation for this project comes from both
practical and theoretical issues with AI systems.
While the performance of large language models
is very impressive across many domains, the com-
putational requirements make it hard to run for
the general public. By showing that carefully fine-
tuned small language models can match or exceed
state-of-the-art performance in specific tasks such
as cryptographic analysis, we aim to present a more
efficient method of completing tasks with special-
ized AI systems that maintain high performance
while reducing computational overhead. Mono-
alphabetic substitution ciphers, wherein each letter
is consistently replaced by another throughout the
text, are a perfect test case, as they are complex
enough to challenge pattern recognition capabili-
ties in small models yet structured enough to evalu-
ate performance objectively.

2 Related Work

Many advances in language models have led to
the application of neural methods for cryptanalysis
(Abood and Guirguis, 2018). Most cryptographic
analysis solutions have relied on statistical methods
and heuristic patterns such as the Markov Chain
Monte Carlo (MCMC) technique (Chen and Rosen-
thal, 2012), which works by initializing a random
substitution alphabet, calculating the probability
that the current substitution alphabet produces valid
plain text, randomly exchanging certain plain letter-
cipher letter correspondences, and repeating steps
2 and 3 as long as the plausibility score of the mes-
sage obtained increases and the alphabet selected



offers the most probable plain message. The three
papers chosen below discuss systems made for nat-
ural language understanding or code analysis that
can be repurposed for cryptographic tasks. The
insights provided by the papers are relevant when
considering resource-constrained implementations
like fine-tuning small language models.

The first paper focuses on ChatGPT’s capability
for simple power analysis (SPA) on cryptosystems
(Zhou et al., 2024). They note that SPA requires ex-
pert intervention and specialized tools. To combat
this, the authors created a new prompt template that
helps to guide the model. Using this prompt engi-
neering approach to a dataset composed of various
implementations of cryptographic algorithms, they
showed that ChatGPT’s outputs were insufficient
and prompting strategies allowed for a successful
recovery of private keys. The papers proved how
domain-specific adjustments can be used to lever-
age AI for complex cryptanalysis tasks.

The second paper proposed a framework called
FoC that focuses on identifying cryptographic func-
tions within stripped binary executables (Shang
et al., 2024). The method first introduced is FoC-
BinLLM, a binary LLM model that generates
natural-language summaries that capture the seman-
tic essence of cryptographic routines. They then
introduced FoCSim, which is a similarity model
that refines the representation to receive analogous
cryptographic implementations from a reference
database. The results show that FoC-BinLLM
works well for minor modifications such as vul-
nerability patches and is far better than ChatGPT
and previous state-of-the-art methods. The papers
give insight into the potential of leveraging fine-
tuned language models for tasks requiring a deep
semantic understanding of code.

The third paper offers a theoretical and empiri-
cal examination of adapting transformer models for
cryptographic analysis (Baek et al., 2024). Even
though the metadata provides limited details, its
contributions are evident in the architectural opti-
mization of transformers-based models to operate
efficiently on resource-constrained devices. By
exploring methods for model compression and fine-
tuning, the paper bridges the gap between the high
computational demands of standard models and
the need for lightweight but effective solutions for
cryptographic applications. The insights presented
are valuable for understanding how transformer
architectures can be modified to maintain perfor-
mance for applications like cryptanalysis of mono-

alphabetic substitution ciphers.
Collectively, these works provide compelling ev-

idence that language models designed for natural
language processing can be used for complex cryp-
tography applications. They highlight the critical
role of prompt engineering and domain-specific
fine-tuning as seen in the adaptations of ChatGPT
for automated SPA and the semantic extractions
by FoC-BinLLM. The third paper reinforces the
feasibility of modifying transformer architectures
to create efficient and high-performance models
suitable for resource-constrained devices. These
insights are directly applicable to this project focus-
ing on fine-tuning small language models for the
analysis of mono-alphabetic substitution ciphers,
as they prove that with careful adaptation, small
models can achieve performance levels that rival
those of larger ones while being accessible for prac-
tical, everyday applications.

3 Proposed Approach

Most works that use LLMs or classical statistical
methods to solve these ciphers rely on heuristic-
based techniques, which struggle with the tradeoff
between model size and inference efficiency. We
are trying to fine-tune a smaller model with GRPO
and test-time scaling. We believe this will lead to
lower computational overhead while maintaining
its accuracy. The first novel idea is introducing
GRPO, which can give us real-time feedback on
its performance, which will allow it to adjust the
learning strategy as it goes. We will also include
a test-time scaling mechanism. This allows the
model to adjust its confidence and output during
the decryption. This will be helpful when dealing
with various ciphers, which current models strug-
gle with as they use fixed methods. Our plan to
achieve this is to start by fine-tuning the Qwen2.5-
0.5B and Phi-4-mini-instruct models on our dataset
using GRPO and then incorporating a test-time
scaling mechanism. We would want to incorpo-
rate each one individually and then both together
so we can compare how each technique impacts
the fine-tuning process. After we have gotten all
our results, we will want to compare them to the
initial performance baseline of the base models to
see if these techniques made any improvements. In
short, we believe that incorporating GRPO and test-
time scaling can give us dynamic inference, which
should be able to overcome current limitations.



Our GRPO system relies on a reward function
that measures the similarity between predicted and
correct outputs, guiding the model’s learning pro-
cess. We balance efficiency with accuracy using
character-wise matching for equal-length strings
(with GPU acceleration) and fuzzy matching for
different lengths. A small offset adjustment for
equal-length matches creates stronger signals for
exact character sequences. What makes our ap-
proach novel is combining GRPO with smaller lan-
guage models for cryptography, which is different
from the current trend toward larger models or fixed
heuristics and potentially enabling powerful tools
on resource-constrained devices.

4 Additional Development of our Ideas
after the Project Proposal

After submitting the Project Proposal, we got to
work fine-tuning a small language model (Qwen2.5-
0.5B) using Group Relative Policy Optimization
(GRPO) with the Huggingface GRPOTrainer im-
plementation. For training, we are utilizing the pop-
ular "Human vs AI dataset" from Kaggle, which
contains 500,000 text samples, both human-written
and AI-generated. We originally planned to use
the "Encrypted Text: Mono-Alphabetic Cipher"
dataset from Kaggle, but determined that it would
be too challenging as the ciphers used in this dataset
map all ascii characters (including things like punc-
tuation) to other ascii characters, as opposed to
only mapping lowercase English letters to other
lowercase English letters, which is what we wanted.
Therefore, when we found out that this dataset
from Kaggle was created from the "Human vs AI
dataset", we decided to just use that directly and
encrypt the text samples ourselves. So we use the
"Human vs AI" dataset and programmatically ap-
ply random mono-alphabetic substitution ciphers
to the text samples in Python and use these trans-
formed (encrypted) texts as training data, where
the expected outputs are the original unencrypted
texts. We anticipated performance limitations with
smaller models and methodological challenges in
matching the accuracy of larger models, as our
initial testing showed us that even state-of-the-
art models frequently failed at this task. Surpris-
ingly, Claude 3.7 Sonnet demonstrated exceptional
accuracy, contradicting our expectations. Early
tests showed that our own trained small model fre-
quently repeated the ciphertext verbatim or only
partially solved sections, and it also often produced

long explanations without addressing the cipher
itself. We eventually identified one cause of this as
the model’s inability to perform basic letter substi-
tution, failing even at simple tasks like replacing
"a" with "b" in a sentence. This required us to refine
our training approach to encourage a complete text
solution and to first train fundamental substitution
skills before attempting full text decryption.

4.1 Evaluation Metrics
We measured decryption success using accuracy
scores comparing the model’s predicted decryption
to the ground truth (original text). Two metrics
were used:

• Character Correctness Percentage: For
predicted outputs of the same length as the
ground truth, we calculated the percentage of
characters that matched exactly at each posi-
tion.

• Fuzzy String Matching Score: For pre-
dicted outputs of potentially different lengths,
we used the ‘fuzz.ratio()‘ function from the
RapidFuzz Python library, which calculates a
normalized Levenshtein distance-based simi-
larity score.

Both metrics range from 0% (no similarity) to
100% (perfect match). Our final results presented
are averaged over a test set of multiple cipher
prompts.

5 Results and Analysis

We evaluated our project in three main avenues:
one was the investigation of directed prompts and
their performance, the second was evaluation of
reasoning models and tokens generated versus ac-
curacy, and finally, a general evaluation of large,
trained, and small LLMs on monoalphabetic substi-
tution ciphers. To get an absolute accuracy score,
we use character correctness percentage for equal-
length outputs, and RapidFuzz for variable-length
comparisons, which is a type of edit distance accu-
racy calculation. All metrics range from 0-100%,
with 100% representing perfect accuracy. Our first
round of tests investigated the performance of dif-
ferent types of prompts on the same task, specifi-
cally directed and undirected versions of the same
prompt. In this context, directed prompts mean that
detailed step-by-step instructions were provided in
the prompt, whereas undirected prompts simply
asked the model to decipher the text. Surprisingly,

https://isopod00.github.io/prompts.html


through testing many different LLMs on both types
of prompts, we found that the models performed
better when given a more undirected prompt. We
believe that this is because the extra directions tend
to confuse the models and make them less likely
to solve the task. This could be due to the fact
that the models are not able to understand the ex-
tra instructions, or it could be that they are trying
to follow the instructions too closely and not fo-
cusing on the task at hand. On all LLMs tested,
only Qwen’s accuracy improved with the more di-
rected prompts, while all other models performed
better with the less directed prompts. This led us to
choose a non-directed prompt for our final model.

Figure 1: Results of 10 total directed versus non-
directed prompts in major LLMs. Orange represents di-
rected prompts, and blue represents undirected prompts.
All values are percentages out of 100.

We also evaluated the models’ reasoning capabil-
ities by analyzing the number of tokens generated
and their accuracy, which we believe is a good in-
dicator of the model’s ability to solve the task. We
hypothesized that models with more tokens would
have higher accuracy, but our results showed that
this was not the case. In fact, the models with the
highest accuracy generated fewer tokens, indicat-
ing that they were more focused on the task at hand.
This suggests that reasoning models may not be
the best choice for this type of task, as they tend to
generate more tokens and less accurate results, and
tend to overthink. When it cannot solve the task, it
will often generate a lot of tokens in an attempt to
explain its reasoning, reach a token max limit, and
then return a random English sentence that is not
related to the task at hand. This evidence lead us
to believe reasoning models aren’t necessarily bet-
ter for this task, and focusing on a non-reasoning
model could help us both speed up training as well
as create a more accurate final model.

Using these criteria, we’ve tested numerous

Figure 2: Tokens generated versus final plaintext out-
put accuracy. A token in this case is retrieved us-
ing Deepseek’s token calculation, which can be found
here. 20 Prompts were tested on both Qwen2.5-Max-
Reasoning as well as DeepseekR1.

mainstream large models to validate our hypothesis
regarding their inability to solve this task. We’ve
also evaluated our small model with and without
our novel training methods, demonstrating that
these approaches enhance model performance by
about 6% for both Qwen and Phi. This rivals large
models like Qwen2.5-Max, but cannot reach the
heights of a model like Claude 3.7 Sonnet. This
limitation stems primarily from small LLMs’ diffi-
culty with letter substitution and performing com-
plex reasoning within constrained timeframes. For
these evaluations, we used ten directed and undi-
rected prompts with identical tasks but different
texts and measured their accuracy.

Figure 3: Final results of Monoalphabetic substitution
on LLMs. Light blue bars refer to LLMs tested on
10 directed prompts, while orange and purple bars are
tested on 500 prompts from our original dataset. Orange
defines our final trained models.

https://api-docs.deepseek.com/quick_start/token_usage


5.1 Error Analysis
Our results indicate that while GRPO fine-tuning
improves the ability of SLMs like Qwen2.5-0.5B
and Phi-4-mini-instruct to handle mono-alphabetic
ciphers compared to standard fine-tuning, signifi-
cant challenges remain. The primary reasons for
failure appear to be:

• Fundamental Substitution Difficulty: As
identified during development, SLMs seem
to lack robust mechanisms for consistent, ar-
bitrary symbol mapping across long contexts.
This is a core requirement for this task. GRPO
helps, but may not fundamentally alter this
limitation without architectural changes or dif-
ferent pre-training.

• Reasoning Limitations: Solving these ci-
phers often involves implicit frequency analy-
sis and pattern matching across the entire text.
SLMs have limited capacity for such complex,
multi-step reasoning compared to larger mod-
els. This might explain why they resort to
partial decryptions or repetitions.

• Training Signal Sparsity: Even with GRPO,
the reward signal (decryption accuracy) might
be sparse, especially early in training when
outputs are random. Getting meaningful feed-
back to guide learning towards the correct sub-
stitutions is difficult.

• Comparison to Claude 3.7 Sonnet: The high
performance of Claude 3.7 suggests that suf-
ficient scale and potentially specific architec-
tural or training data aspects in larger mod-
els *can* overcome these challenges. Our
SLM fails where Claude succeeds likely due
to these scale and reasoning capacity differ-
ences. Conversely, our fine-tuned SLM likely
outperforms *other* LLMs (like GPT-3.5 in
Figure 1) because its training was highly spe-
cialized for this specific task, whereas the gen-
eral LLMs rely on emergent abilities without
task-specific fine-tuning.

5.2 Analysis of Failure Cases
Persistent failure cases often involve longer texts
or texts with less common letter frequency distribu-
tions (making statistical clues weaker). Our current
approach, relying on fine-tuning a general-purpose
SLM architecture with GRPO, likely cannot fully
address these because:

• Limited Context Window/Memory: SLMs
struggle to maintain consistency and track sub-
stitutions over very long passages.

• Inherent Architectural Limits: The stan-
dard transformer architecture in SLMs may
not be optimally suited for the kind of
precise, rule-based symbol manipulation re-
quired, compared to tasks relying on semantic
understanding.

Potential solutions to explore in future work in-
clude:

• Curriculum Learning: Start by training the
model on extremely simple substitution tasks
or very short texts, gradually increasing com-
plexity.

• Hybrid Approaches: Combine the SLM with
a classical statistical module (e.g., frequency
analysis) to provide stronger priors or con-
straints.

• Architectural Modifications: Explore SLM
architectures specifically designed for sym-
bolic reasoning or incorporating external
memory.

• Different RL Techniques: Investigate other
RL algorithms or reward shaping strategies
that might provide denser or more informative
feedback.

6 Discussion Points

6.1 Replicability

Our results should be reasonably replicable. We
used publicly available base models (Qwen2.5-
0.5B and Phi-4-mini-instruct, both accessible
via Hugging Face) and standard libraries for
fine-tuning and evaluation (Hugging Face Trans-
formers, ‘trl’ library including ‘GRPOTrainer’,
RapidFuzz). The base dataset we built ours from
("Human vs AI") is available here on Kaggle. The
core components required for replication are the
specific base model architecture (either Qwen2.5-
0.5B or Phi-4-mini-instruct), the script used to
generate the training dataset by applying random
mono-alphabetic substitutions to the "Human vs
AI" text samples, the Python code utilizing the ‘trl’
library’s ‘GRPOTrainer’ and our custom reward
function (which is based on ‘rapidfuzz.fuzz.ratio’),
and the configuration parameters used for the

https://www.kaggle.com/datasets/shanegerami/ai-vs-human-text


‘GRPOConfig‘. Key hyperparameters from our
experiments include: ‘num_train_epochs=2’,
‘per_device_train_batch_size=4’,
‘num_generations=4’, ‘logging_steps=50’,
and the use of ‘bf16=True’ for mixed precision.
Distributed training was configured using Deep-
Speed with ‘num_processes=4’ and ‘zero_stage=3’.
All of our code for this project, including the
dataset generation code and the fine-tuning code,
is publicly available here on our GitHub repository,
ensuring that other researchers can reproduce our
experimental setup and results.

6.2 Datasets

Our approach of programmatically generating
the training dataset by applying random mono-
alphabetic ciphers to a large, existing text corpus
("Human vs AI") addresses the need for a large
volume of paired encrypted and unencrypted text
examples. This method is valuable because cre-
ating a sufficiently diverse and extensive dataset
of this specific type is crucial for training models
for cryptographic tasks. By using the "Human vs
AI" dataset, known for its variety of text styles and
topics, we aimed to train a model that could handle
different linguistic patterns. Our decision to gener-
ate the data ourselves, rather than using the more
complex "Encrypted Text: Mono-Alphabetic Ci-
pher" dataset from Kaggle that included encryption
of punctuation and symbols as well, was motivated
by the need to focus the model specifically on let-
ter substitutions, which is the core challenge of
mono-alphabetic ciphers on standard English text.
This programmatic dataset generation method pro-
vides a clear blueprint that other researchers work-
ing on similar symbolic manipulation or classical
cryptanalysis tasks with machine learning could
adopt, highlighting the feasibility of creating tai-
lored datasets without requiring large, pre-existing
encrypted corpora. It also underscores the impor-
tance of carefully defining the scope and character-
istics of the target cipher and text when preparing
training data.

6.3 Ethics

While mono-alphabetic substitution ciphers are not
used for serious security purposes today, the de-
velopment of AI tools capable of cryptanalysis,
even for simple ciphers, warrants ethical considera-
tion. The primary potential harm or risk lies in the
misuse of such tools. Although unlikely to break
modern encryption, a sophisticated and widely ac-

cessible tool for solving simple ciphers could poten-
tially be used maliciously in specific, limited con-
texts, such as rapidly solving puzzles, challenges,
or analyzing historical or niche communications
that might still employ weak substitution methods.
Furthermore, any research in automated code or
system breaking, even on seemingly harmless tar-
gets, contributes to the broader landscape of AI-
driven security analysis, which necessitates a com-
mitment to responsible disclosure and preventing
harmful applications. The "Human vs AI" dataset,
while convenient, may also contain inherent bi-
ases present in its source material, although the im-
pact of semantic bias on this specific task (focused
on symbolic manipulation) is likely minimal com-
pared to tasks relying on language understanding.
To address these ethical considerations, it is crucial
to clearly state the limitations of the developed tool,
emphasizing that it is designed for simple, histori-
cal ciphers and is not capable of breaking modern
cryptographic systems; focus the research on aca-
demic exploration of AI capabilities in symbolic
reasoning and pattern recognition, rather than pro-
moting it as a practical security-breaking tool; and
engage in open discussion about the potential dual-
use nature of cryptanalysis research and advocate
for responsible AI development practices. Given
the simplicity of the target cipher, the immediate
societal risk posed by this specific project is low,
but the ethical principles discussed are important
for the broader field of AI applied to security and
cryptanalysis.

6.4 Limitations and Future Work

Despite improvements from GRPO, our current
fine-tuned SLM still exhibits significant limitations
that constrain its effectiveness on mono-alphabetic
substitution ciphers. The accuracy ceiling means
the performance achieved, while improved over
baseline SLMs, remains well below perfect de-
cryption and significantly lags behind the best-
performing large model (Claude 3.7 Sonnet) on this
specific task, suggesting inherent limitations in the
SLM’s capacity for the complex pattern matching
and consistent symbolic mapping required. Gen-
eralization is limited as the model was trained ex-
clusively on mono-alphabetic substitution ciphers
derived from the "Human vs AI" text corpus; its
ability to generalize to texts with significantly dif-
ferent linguistic styles, shorter or much longer pas-
sages, or variations of the substitution cipher (in-
cluding non-alphabetic characters or capitalization)

https://github.com/Evan-Pochtar/SmaLLM-Cryptography


is limited without further specific training. General-
ization to more complex classical ciphers, such as
polyalphabetic ciphers, is highly unlikely with the
current approach. Scalability to complexity is also
an issue, as the approach appears to struggle with
longer texts, where maintaining consistent substitu-
tions across thousands of characters becomes more
challenging.

Building upon this work, several promising fu-
ture research directions emerge. One avenue is
exploring alternative SLM architectures, investi-
gating whether models specifically designed for
symbolic reasoning or incorporating external mem-
ory mechanisms might be better suited for pre-
cise symbol mapping tasks than general-purpose
causal language models. Another important di-
rection is to systematically investigate the utility
of supervised learning techniques, perhaps using
the generated encrypted/decrypted pairs for stan-
dard fine-tuning or as a pre-training step before
applying reinforcement learning, which could help
the model learn basic substitution patterns more
efficiently compared to purely relying on sparse
rewards from RL. Supervised learning could also
serve as a valuable baseline for comparison against
RL methods. Hybrid approaches that combine the
strengths of neural models (potentially trained with
supervised learning or RL) with classical statistical
methods are also worth exploring. For instance, an
SLM could propose candidate substitutions guided
by frequency analysis from a statistical module,
and the reward function could incorporate statis-
tical likelihood alongside text similarity. Beyond
GRPO, investigating other reinforcement learning
algorithms or more sophisticated reward shaping
strategies could provide more dense and informa-
tive feedback to the model during training, partic-
ularly in the early stages when outputs are highly
random. Analyzing SOTA LLM success is impor-
tant to conduct a detailed analysis of why models
like Claude 3.7 Sonnet perform exceptionally well
on this task. Understanding if it’s purely scale, spe-
cific architectural features, novel training data, or a
combination could inform the development of more
capable SLMs for symbolic tasks. Applying the
methodology to other classical ciphers could adapt
the dataset generation and fine-tuning methodology
to other simple classical ciphers (such as Caesar,
Simple Transposition, etc.) to test the adaptabil-
ity and limitations of the approach across different
types of cryptographic transformations. Finally,
refining the reward function could involve exper-

imenting with variations of the RapidFuzz-based
reward function, potentially incorporating penal-
ties for inconsistent substitutions detected within
the output, to provide a stronger signal for correct
character mapping.

7 Conclusion

This work explored the application of fine-tuned
Small Language Models (SLMs) such as Qwen2.5-
0.5B and Phi-4-mini-instruct trained with Group
Relative Policy Optimization (GRPO), to the task
of decrypting mono-alphabetic substitution ciphers.
We demonstrated that targeted fine-tuning using
GRPO can improve the performance of SLMs on
this task compared to standard supervised meth-
ods, offering a pathway towards creating compu-
tationally efficient cryptographic tools. However,
our results also highlight the significant challenges
SLMs face with precise, rule-based symbolic ma-
nipulation and complex reasoning, as evidenced by
the performance gap compared to state-of-the-art
large models like Claude 3.7 Sonnet and persis-
tent failure modes. Our investigation contributes to
understanding the trade-offs between model size,
training methodology, and task complexity, sug-
gesting that while SLMs hold promise for special-
ized applications, overcoming their inherent limita-
tions for certain reasoning tasks remains an open re-
search question. Future work involving curriculum
learning, hybrid approaches, and architectural ex-
ploration may further unlock the potential of SLMs
in cryptographic and symbolic domains.
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