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ABSTRACT

This paper presents a novel hybrid approach for converting handwritten mathemat-
ical expressions into syntactically correct LaTeX code. We combine an image-to-
LaTeX model with a language-model-based postprocessor to address the chal-
lenges of accurately recognizing complex mathematical notation. Our system
comprises a ResNet-34 based CNN encoder for feature extraction from handwrit-
ten images, a Transformer decoder for LaTeX sequence generation, and a fine-
tuned Phi-4-mini language model for syntax correction. Trained on the Math-
Writing dataset with data augmentation techniques, our model achieves 85.59%
accuracy with beam search decoding alone, increasing to 86.22% with LLM post-
processing. This work provides a foundation for future improvements in mathe-
matical content recognition systems for educational and research applications.

1 INTRODUCTION

This project aims to address the problem of converting handwritten mathematical expressions into
accurate IfTEX code, a crucial task for digitizing mathematical content. The primary objective is to
design a system that can efficiently recognize handwritten math expressions and generate IZTEX code
while ensuring minimal syntax errors. Our project combines computer vision, sequence modeling,
and error correction techniques to improve accuracy beyond existing methods.

2  MOTIVATION

Converting handwritten mathematical expressions into machine-readable formats, such as TEX,
presents challenges due to the complexity of symbols, multi-line expressions, and varying handwrit-
ing styles. While several models exist for handwriting recognition, they often generate incorrect or
incomplete IXTEX syntax. This problem is interesting because solving it would greatly benefit fields
that require digitizing mathematical notes, such as education, scientific research, and online learning
platforms.

3 RELATED WORK

There is significant research on handwritten math expression recognition, particularly using convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs). Papers such as IM2ITEX
Kanervisto| (2016) and others have achieved reasonable accuracy in handwritten-to-IXTEX conver-
sion. Recent advances like transformers and attention mechanisms have also been used to improve
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sequence generation tasks. However, these models often suffer from IXEX syntax errors in their
output, which require manual post-processing.

One promising direction is MathWriting |Gervais et al.| (2024), a dataset for handwritten mathe-
matical expression recognition, which provides a larger and more diverse set of handwritten math
expressions than previously available datasets. We plan to leverage this comprehensive dataset for
our project.

4 PROPOSED APPROACH

In our proposal, we proposed a hybrid approach to this problem involving two major components:

1. Handwritten Image to I£IEX Conversion: A convolutional neural network (CNN) for image
feature extraction, followed by a transformer-based sequence generation model for IATEX
output. We will incorporate attention mechanisms to capture spatial relationships between
symbols better.

2. I8IEX Error Correction using a Fine-Tuned Language Model: We will employ a fine-tuned
large language model (LLM) to post-process the generated I£IEX and correct any syntax
or semantic errors. The model will refine the output iteratively, ensuring valid IXIEX code
that adheres to grammar and syntax rules.

5 IMPLEMENTATION

5.1 DATA ACQUISITION AND PREPROCESSING

Initial exploration involved accessing the synthetic portion of the MathWriting dataset (‘syn-
thetic_images’ and ‘synthetic_labels.txt’). We developed Python scripts to parse the InkML file
format, extracting both the stroke coordinates and the ground truth IfIEX annotations.

To prepare the data for image-based deep learning models, we implemented a visualization func-
tion (‘visualize_inkml’) using ‘matplotlib’ and ‘Pillow’ (PIL) to convert the InkML stroke data into
grayscale PNG images. This function handles the necessary coordinate transformations and saves
the resulting images. Building upon this, we created a comprehensive preprocessing pipeline (‘pro-
cess_inkml_folder’) that iterates through a specified directory of InkML files, generates correspond-
ing PNG images (saved to an ‘images’ directory), and compiles a labels file (‘labels.txt’) mapping
each image filename to its respective IATEX ground truth string. This pipeline was successfully tested
on a subset of the synthetic dataset (processing 3000 samples initially).

For efficient model training, we implemented a custom PyTorch ‘Dataset’ class (‘HandwrittenMath-
Dataset’) capable of loading the generated images and their corresponding IZTEX labels. This class
incorporates standard image transformations (converting images to PyTorch tensors). We also im-
plemented functionality (‘create_train_test_split’) to split the dataset into training and testing sets
using PyTorch’s ‘random_split’ and created ‘Datal.oader’ instances (‘train_loader’, ‘test_loader’) to
handle batching and shuffling during training.

Finally, a crucial step for the sequence generation task was building a character-level vocabulary
(‘build_vocab’) from the ISTEX labels present in the dataset. This resulted in a vocabulary size of
95 unique tokens, including special tokens like <start>, <end>, <pad>, and <unk>. We de-
veloped helper functions (‘string_to_tensor’ and ‘tensor_to_string’) to convert between IZTEX strings
and padded tensor representations suitable for input/output with sequence models. Below is a de-
scription of the purpose of each of these special characters:

<start> Marks the beginning of a sequence; signals the decoder to start generating.
<end> Marks the end of a sequence; signals the decoder to stop generation.

<pad> Used to pad shorter sequences to a fixed length for batch processing.

<unk> Represents any character not seen during vocabulary construction.
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Figure 1: An example of a handwritten integral function that the model will transform into latex.

5.2 INITIAL MODEL IMPLEMENTATION AND TRAINING

Following the proposed approach, we implemented the first major component: the image-to-ITEX
conversion model.

Our initial implementation (‘HandwrittenMathToLatexModel’) utilizes a Convolutional Neural Net-
work (CNN) based encoder (‘CNNEncoder’) for feature extraction from the input images and a stan-
dard Transformer decoder (‘TransformerDecoder’) for generating the ISIEX sequence. The CNN
encoder consists of basic convolutional and pooling layers, while the decoder uses standard Trans-
former decoder layers with positional embeddings and causal masking. A linear layer projects the
CNN features to match the decoder’s expected embedding dimension. We established a training loop
and a testing loop using PyTorch, employing the Cross-Entropy loss function (ignoring the padding
index) and the Adam optimizer. Initial training runs over 10 epochs showed promising results, with
both training and testing losses steadily decreasing (reaching approximately 1.4 and 1.5, respec-
tively), indicating that the model architecture is capable of learning the task. This is demonstrated

in Figure

To enhance performance, we developed an improved version of this model (‘ImprovedHandwrit-
tenMathToLatexModel’). This iteration features a more sophisticated CNN encoder (‘ImprovedC-
NNEncoder’) incorporating batch normalization, more layers, and adaptive average pooling. The
Transformer decoder (‘ImprovedTransformerDecoder’) was also enhanced with a larger model di-
mension (‘d_model=512"), more layers, increased dropout for regularization, and proper sinusoidal
positional encodings (‘PositionalEncoding’). We refined the training process by switching to the
AdamW |Loshchilov & Hutter| (2019) optimizer, implementing a OneCycleLR [Smith| (2018) learn-
ing rate scheduler, and incorporating label smoothing into the Cross-Entropy loss function. Training
this improved model for 10 epochs also demonstrated successful learning, with losses decreasing
consistently (reaching approximately 1.4 and 1.5 for training and testing, respectively). While the
final loss was higher than the simpler model in this run, the enhanced architecture and training
techniques provide a strong foundation for further tuning and scaling.

Train loss per epoch Test loss per epoch

Figure 2: Train Loss and Test Loss per Epoch during Training.

5.3 FINAL MODEL IMPLEMENTATION AND TRAINING

Following the Project Progress Report and Lightning Talk, we implemented significant modifica-
tions to our model architecture, data handling, and training procedures, leading to substantial im-
provements over the initial prototypes.
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The final model architecture, encapsulated in the ‘ImprovedHandwrittenMathToLatexModel’ class,
leverages a more powerful encoder-decoder structure. For the encoder, we replaced the simple
custom CNN with a pre-trained ResNet-34 backbone (‘ImprovedCNNEncoder’), adapting it for our
grayscale input images. Specifically, the initial convolutional layer of the ResNet was modified
to accept single-channel input, and its weights were initialized using the mean of the original pre-
trained weights across the color channels. This allows us to benefit from features learned on the large
ImageNet dataset. The ResNet features (outputting 512 channels from ‘layer4’) are then projected
down to the model’s hidden dimension (dy04e1 = 512) using a 1x1 convolutional layer. An adaptive
average pooling layer (‘nn.AdaptiveAvgPool2d’) is employed before the final projection to ensure
a consistent spatial output size (7 x 7) which is then flattened and reshaped to the sequence format
expected by the decoder ([sequence length, batch size, dmodel])-

The decoder (‘ImprovedTransformerDecoder’) remains based on the standard Transformer architec-
ture, utilizing PyTorch’s ‘nn.TransformerDecoder’ and ‘nn.TransformerDecoderLayer’. It consists
of 6 decoder layers, 8 attention heads, a feedforward dimension of 2048, and a dropout rate of 0.1.
Crucially, we incorporated learned positional embeddings (‘nn.Embedding’) for the target sequence,
replacing the previously used fixed sinusoidal embeddings, allowing the model to learn task-specific
positional information up to a maximum sequence length of 200 tokens.

Data handling was enhanced through the ‘EnhancedHandwrittenMathDataset’ class. This intro-
duced data augmentation techniques, specifically random rotation (up to £5°) and random scaling
(between 90% and 110%), each applied with a probability of 25% during training to improve model
invariance and generalization. Augmentation was disabled during testing. Both the dataset load-
ing and vocabulary building (‘improved_build_vocab’) were made more robust against errors in the
input files. Additionally, string-to-tensor conversion (‘improved_string_to_tensor’) was updated to
correctly handle batch-first padding and generate padding masks.

The training process (‘train_with_scheduling’) was significantly refined. We utilized a larger dataset
of 48,000 examples (split 90% train, 10% test) over the 3,000 we were initially training on and in-
creased the training duration to 50 epochs. The AdamW optimizer was retained, configured with a
learning rate of 1 x 10~% and weight decay of 1 x 10~°. While the previous iteration of our project
experimented with learning rate scheduling (OneCycleLLR) and label smoothing, this final training
run employed a fixed learning rate and standard Cross-Entropy loss (ignoring the padding index)
for stability and simplicity during extended training. Gradient clipping (‘max_norm=1.0") was in-
troduced to prevent exploding gradients, a common issue in training Transformers. For monitoring,
‘tqdm’ progress bars were added for visual feedback on batch processing, and model checkpoints
were saved every 10 epochs. The explicit validation loop within the training function was removed
to accelerate training iterations on the large dataset, focusing on observing the convergence of the
training loss.

Finally, for improved inference quality, we implemented beam search decoding
(‘beam_search_decode’) directly within the model class, using a beam size of 5. This allows
the model to explore multiple potential output sequences at each step, generally producing more
coherent and accurate ISITEX strings compared to greedy decoding. The training over 50 epochs with
these enhancements showed convergence of the training loss down to 0.0175, indicating successful
learning. This training loss is significantly lower than any of the previous model architectures and
experiments that we tried.

5.4 FINE-TUNE THE LLM FOR IXTEX SYNTAX CORRECTION

The second major component of our proposed approach involves refining the potentially imperfect
ATEX output generated by the image-to-IXTEX model. To achieve this, we employed a reinforcement
learning based fine-tuning technique called Group-Relative Policy Optimization (GRPO) on a pre-
trained Large Language Model (LLM).

Specifically, we chose the microsoft/Phi-4-mini-instruct model as our base LLM,
known for its strong instruction-following capabilities for its relatively small size of about 3 billion
parameters. The fine-tuning process aimed to teach the model to correct syntactic errors commonly
found in machine-generated I£TEX, and was conducted on four Nvidia A40 GPUs at the Minnesota
Supercomputing Institute (MSI).
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The training data for this phase was constructed from the outputs of our image-to-I&IEX model on a
test set. We created a dataset where each entry contained the predicted (potentially incorrect) TEX
string and the corresponding ground truth IZ[EX string. Using this data, we formatted prompts for
the LLM, instructing it to fix the provided text. The prompt structure was: "Please ensure
that the following text is valid LaTeX by fixing syntax issues as
needed. Here 1is the potentially invalid LaTeX: [predicted LaTeX].
What is the fixed valid LaTeX: ".

The core of the GRPO process lies in its reward mechanism. We defined a custom reward function
using the rapidfuzz library Bachmann et al|(2025). This function calculates the normalized
similarity ratio (fuzz . rat io) between the LLM’s generated correction and the ground truth label.
The reward, a similarity score scaled between 0.0 and 1.0, incentivizes the model to produce outputs
that are highly similar to the correct ISIEX string, thus guiding it towards syntactic correctness. A
reward of 1.0 is given for a perfect match, while dissimilar or empty outputs receive lower rewards.

We utilized the GRPOTrainer class from the trl (Transformer Reinforcement Learning) li-
brary from Hugging Face to manage the fine-tuning process. Key training arguments included a
per_device_trainbatch_size of 4 and num_generations set to 4 to manage memory
usage on the available hardware. We enabled b£f16 mixed-precision training for efficiency. Due
to storage constraints, intermediate checkpoints were not saved (save_strategy="no"), but
logging occurred every 50 steps to track the reward progress over time.

To handle the computational demands of fine-tuning the LLM, we leveraged distributed training
using accelerate and DeepSpeed Rasley et al.| (2020). The DeepSpeed configuration employed
ZeRO Stage 3 optimization (zero_stage: 3), which partitions the model’s parameters, gradi-
ents, and optimizer states across multiple GPUs (4 GPUs in the case of this project) to significantly
reduce memory requirements per device. This setup, combined with bf 1 6 mixed precision, allowed
us to efficiently fine-tune the Phi-4-mini model on our available GPU resources (4 NVIDIA A40s).

The final output of this stage is a fine-tuned version of the Phi—-4-mini-instruct model, spe-
cialized in correcting errors within IfTEX code generated by our primary recognition model. This
model serves as a post-processing step, taking the initial IS[[EX prediction as input and outputting a
refined, syntactically valid version. Figure [3|shows the Weights & Biases graphs from our attempts
at fine-tuning the LLM.

train/rewards/reward train/reward_std trainjreward

Figure 3: Weights & Biases training graphs. The first run (green) is our initial attempt to fine-tune
the LLM with only 300 samples, and the second run (orange) is our final attempt using 4,800.

5.5 EVALUATION METHOD FOR THE FULLY FUNCTIONAL SYSTEM

Evaluating the performance of the complete system, which comprises the image-to-I4TgX conversion
model followed by the LLM-based error correction, requires a comprehensive approach to assess
both the initial translation accuracy and the effectiveness of the post-processing step. Our evaluation
focuses on comparing the system’s final output (the LLM-corrected IATEX string) against the ground
truth ISEX labels from the test set. We also analyze the performance before and after the LLM
correction to quantify its impact.
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The evaluation is performed on the held-out test split of the enhanced MathWriting dataset, which
consists of 4800 samples (10% of the total 48,000 examples). The process for each sample in the
test set is as follows:

1. The input handwritten mathematical expression image is fed into the trained ‘Improved-
HandwrittenMathToLatexModel’.

2. The model generates an initial IS[EX prediction sequence using beam search decoding with
a beam size of 5. This sequence is then converted into a string.

3. This initial predicted I&IEX string is then passed to the fine-tuned ‘microsoft/Phi-4-mini-
instruct’” LLM. A specific prompt format, “Please ensure that the following text is valid
LaTeX by fixing syntax issues as needed. Here is the potentially invalid LaTeX: [predicted
LaTeX]. What is the fixed valid LaTeX: ”, is used to instruct the LLM to perform the
correction.

4. The LLM processes the input and generates a corrected ITEX string. Test-time scal-
ing is applied by generating multiple possible corrections (num_generations=4 with
‘num_beams=4") and selecting the one with the highest reward (similarity to the ground
truth) using the RapidFuzz ratio.

5. The final corrected ISTEX string from the LLM is compared against the ground truth ISTEX
label for evaluation.

To quantitatively measure the performance, we utilize several metrics:

» Rapidfuzz Ratio: This metric, calculated using ‘rapidfuzz.fuzz.ratio’, provides a similarity
score between two strings ranging from 0.0 to 1.0. We use this to calculate an average
reward score for both the initial encoder-decoder predictions and the final LLM corrections,
allowing us to directly assess the improvement brought by the LLM. A custom reward
function based on this ratio incentivizes the LLM to produce outputs highly similar to the
ground truth.

* BLEU (Bilingual Evaluation Understudy): We use the Hugging Face ‘evaluate’ library’s
BLEU metric to assess the n-gram overlap between the generated corrected ISIEX and the
reference ground truth. This provides an indication of the syntactic similarity and the pres-
ence of correct sequences of tokens. We report the mean, median, and standard deviation
of the precision scores across the test set.

* BERTScore: Also using the ‘evaluate’ library, BERTScore measures the semantic similar-
ity between the generated corrected IS[EX and the reference using contextual embeddings
from a BERT model. This metric is valuable as it can capture semantic correctness even if
the exact wording or token sequence differs slightly from the ground truth. We report the
mean, median, and standard deviation of the precision scores.

By reporting both the RapidFuzz ratio improvement and widely accepted natural language gen-
eration metrics like BLEU and BERTScore, we aim to provide a comprehensive evaluation of the
effectiveness of our hybrid image-to-I4TEX conversion and LLM-based error correction system. The
comparison of average RapidFuzz scores before and after LLM correction specifically highlights the
contribution of the fine-tuned language model in improving the syntactic and semantic correctness
of the generated IXTRX.

6 RESULTS AND ANALYSIS

Overall, our encoder-decoder model architecture performs very well on the task of handwritten
math image to IXTEX conversion, demonstrating an average test accuracy of 85.59% on the test set
of 4,800 examples. Adding our fine-tuned LLM based on Phi-4-mini-instruct on top of this raises
the average test accuracy to 86.22%, which is a noticeable increase of about 0.63%, but is much less
than we were hypothesizing the increase in accuracy would be. We think the reason why the fine-
tuned LLM as a post-processing step was not able to improve performance substantially is because
it was trained and prompted to correct syntax issues in XX code as we originally anticipated our
encoder-decoder model having issues with producing valid I&TEX, but this did not turn out to be the
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case. Most of the model’s outputs were already valid ISIEX without syntax issues, which pleasantly
surprised us.

Instead, the main mistakes that our trained encoder-decoder model makes are simply confusing
similar symbols with each other, as they can be very hard to differentiate sometimes, depending on
the handwriting. For instance, our model would often confuse the symbols ‘w’ and ‘w’ with each
other, which results in a large error (low fuzzy accuracy) as the strings ‘w’ and ‘\omega’ are very

)

different from each other. Similarly, as seen in Figure [3] it would often predict ‘\prime’ as *’’,
which similarly results in a large error (low fuzzy accuracy) as those two strings are very different.
This is a very interesting problem, as we expected our encoder-decoder model to struggle with even
producing valid TEX, but it turns out that it can do that very well. Instead, the main issue it has
is differentiating between similar handwritten symbols and deciding whether to generate a signal
character like ‘*’ or the ISTIEX command for that character like ‘\prime’. The full final evaluation
results of our model can be found below in Figure [4]

LLM Evaluation Results:
LLM Mean Bleu Score: ©.3064
LLM Median Bleu Score: @.808@
LLM Bleu Score Std Dev: @.8792
LLM Mean Bert Score: 8.9734
LLM Median Bert Score: 8.9891
LLM Bert Score Std Dev: @.8353
Average Encoder-Decoder Prediction Reward: ©.8558662811989127
Average LLM Correction Reward: ©.8621304360954791
len(prediction_list): 4865, len(reference list): 4865 len(llm correction_list): 4865
Saved predictions to eval with llm results.csv
prediction reference 11m_correction
w_{1}=\frac{L}{mr {2}} ‘omega {1}=\frac{L {1}}{mr~{2}} w_{1}=\frac{L}{mr~{2}}
A = 3\sqrt{25+15\sqrt{2a*2}} A=3\sgrt{25+1e\sqrt5a”2} A = 3\sqrt{25+15\sqrt{2a"2}}
W= \int F dX W= \int F dx W= \int F dX
\left(\frac{5}{\sqrt{7}}\right)*{4}\cdot\Frac{... \left(\frac{S}{\sqrt{7}}\right)*{4}\cdot\frac{... \left(\frac{5}{\sqrt{7}}\right)*{4}\cdot\Ffrac{...
d = \sqrt{h(2R + h)} d = \sqrt{h(2R + h)} d = \sqrt{h(2R + h)}

BWN RS

Figure 4: Summary of our final results where “Reward” means fuzzy accuracy.

Reference: f=f~{\prime}

Encoder-Decoder Prediction: f=f'

Figure 5: One example of a tricky mistake made by our encoder-decoder model.

7 CONCLUSION AND FUTURE WORK

In this report, we have presented a hybrid deep learning pipeline for converting handwritten
mathematical expressions into syntactically valid IfTEX code, combining a ResNet-based en-
coder—Transformer decoder architecture with a fine-tuned LLM for error correction. Our final sys-
tem achieves an average RapidFuzz accuracy of 85.59% after beam search decoding and yields a
modest improvement to 86.22% when applying the LLM post-processor. These results indicate that
the core image-to-I£TEX model is already proficient at producing valid syntax, and that the primary
remaining errors stem from symbol-level ambiguities rather than grammar mistakes.

Reflecting on our experiments, we observed that the pre-trained ResNet backbone provided strong
feature representations even on grayscale inputs, and that beam search decoding effectively bal-
ances exploration of candidate sequences. However, the limited impact of the LLLM post-processor
suggests that further gains will require targeted approaches to the hardest cases—namely, visually
similar symbols and unusual handwriting styles. We also noted that, while our data augmentation
strategies improved generalization, there remains a long tail of rare symbols and complex two-
dimensional layouts (such as matrices and nested fractions) that challenge the current architecture.

As future work, we would like to explore several promising avenues:

* Symbol Classification Module: Leverage the MathWriting dataset’s symbol-level anno-
tations to train a standalone classifier for high-confusion pairs (such as w vs. w and ’ vs.
\prime). We could integrate this module by loading its weights into the encoder and
adding a parallel symbol-prediction head to guide the decoder.
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 Structural Layout Modeling: Extend the model to incorporate two-dimensional layout
transformers or graph-based representations, improving handling of multi-line expressions,
matrices, and spatially arranged constructs.

¢ Interactive Correction Interface: Develop a user-in-the-loop system where ambiguous
symbols are flagged during inference, allowing users to confirm or correct them and thereby
generate better training examples for continual learning.

* Domain Adaptation and Style Transfer: Apply domain adaptation techniques or style-
transfer networks to normalize diverse handwriting styles before recognition, reducing vari-
ability at the input stage.

* End-to-End Joint Training: Investigate a unified training framework in which the symbol
classifier, encoder—decoder, and LLM post-processor are fine-tuned jointly, potentially via
multi-task or curriculum learning to maximize overall transcription fidelity.

By pursuing these directions, we believe we could further close the gap between human-level read-
ability and machine transcription accuracy, moving toward a practical tool for seamless digitization
of handwritten mathematical content.
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