
SPORTS Design Document v.1

The System for Production Of Recreational Team Scheduling (SPORTS)
Design Document

Authors:
Wendy Meng
Evan Pochtar
Timothy Tu
William Wang

Group: 5

The purpose of this document is to provide you with a guideline for writing the software design
document for your project.

Points to remember:
• Content is important, not the volume. Another team should be able to develop this

system from only this document.
• Pay attention to details.
• Completeness and consistency will be rewarded.
• Readability is important.

CSci 5801: Software Engineering I 1 of 12



SPORTS Design Document v.1

This page intentionally left blank.

CSci 5801: Software Engineering I 2 of 12



SPORTS Design Document v.1

Document Revision History

Date Version Description Author

11/14/2024 0.0 Initial draft

11/14/2024 0.1 Finished Section 1 Evan Pochtar

11/14/2024 0.2 Finished Text of Section 2 Evan Pochtar

11/20/2024 0.3 Finished Section 3 Evan Pochtar

11/24/2024 0.4 Added Class Diagram Wendy Meng

11/24/2024 0.5 Finished Section 4 text and descriptions Wendy Meng

11/24/2024 0.6 Finished Section 7 and 8 Timothy Tu

11/25/2024 0.7 Added Diagrams for Section 2 Evan Pochtar

11/25/2024 0.8 Finished Section 5 and 6 William Wang

11/25/2024 0.9 Changed and cleaned up Section 2 Evan Pochtar

11/25/2024 0.95 Cleaned up and updated Section 4 text Wendy Meng

11/25/2024 0.97 Draft Finished, Clean up, grammar
checks, diagram checks.

Evan Pochtar

11/25/2024 1.0 Final proofread + checks Timothy Tu

CSci 5801: Software Engineering I 3 of 12



SPORTS Design Document v.1

This page intentionally left blank.

CSci 5801: Software Engineering I 4 of 12



SPORTS Design Document v.1

Contents
1 Introduction..................................................................................................7
1.1 Purpose ..........................................................................................................7 1.2
System Overview ...........................................................................................7 1.3
Design Objectives..........................................................................................7 1.4
References .....................................................................................................7 1.5
Definitions, Acronyms, and Abbreviations ..................................................7

2 Design Overview..........................................................................................7 2.1
Introduction....................................................................................................7 2.2
Environment Overview ..................................................................................7

2.3 System Architecture......................................................................................8
2.3.1 Top-level system structure of Fuel level controller .................................................... 8
2.3.2 Level Monitoring Sub-system .................................................................................... 8
2.3.3 Fuel Subsystem ......................................................................................................... 8

2.4 Constraints and Assumptions ......................................................................8 3
Interfaces and Data Stores..........................................................................9
3.1 System Interfaces ..........................................................................................9

3.1.1 Pressure Sensor Interface ......................................................................................... 9
3.1.2 Pump Valve Controller Interface................................................................................ 9

3.2 Data Stores...................................................................................................10 4
Structural Design.......................................................................................10 4.1

Class Diagram..............................................................................................10 4.2 Class
Descriptions.......................................................................................10

4.3 Classes in the Fuel Subsystem...................................................................10
4.3.1 Class: Tank .............................................................................................................. 10

5 Dynamic Model ..........................................................................................11
5.1 Scenarios .....................................................................................................11 6

Non-functional requirements....................................................................11 7
Supplementary Documentation......................Error! Bookmark not defined.

CSci 5801: Software Engineering I 5 of 12



SPORTS Design Document v.1

1 Introduction
This document outlines the design specifications for the SPORTS system, a platform for
managing sports leagues, venues, and team registrations. It provides software architectural
views, component interactions, and design decisions that will guide the system's
implementation.

1.1 Purpose
This design document serves as a blueprint for developers, system architects, and
stakeholders involved in the SPORTS system implementation. It elaborates on the
technical architecture, component relationships, and design patterns chosen to meet
the specified requirements. The document is structured to progress from high-level
system overview to detailed design specifications, allowing for clear communication
of the system to all stakeholders, as well as providing an overview of the system in
general.

1.2 System Overview

The SPORTS system is a platform designed to manage recreational sports leagues and
their associated operations. The system serves multiple user types including League
managers and administrators, Team managers, Venue operators, Players and Vendors
(for concessions). The system operates in a web-based environment, allowing for league
registration, venue management, scheduling, and regulation compliance. It's designed to
handle multiple sports, leagues, and venues simultaneously while enforcing region
specific rules as well as weather dependent scheduling.

1.3 Design Objectives

The SPORTS system is designed to support management of team registrations, game
scheduling, and venue bookings across a variety of leagues. The primary design objective
is to create a scheduling system that meets the diverse needs of teams, league
organizers, and venue managers by implementing both functional and non-functional
requirements related to league organization, team management, venue scheduling, and
concession regulation.

The system provides a structured approach to handling functional requirements, including:

Concessions: Ensuring venue concession policies are followed based on laws and league
constraints.

Storage: Storing league data, team rosters, schedules, and regulation histories.

Authorization: Requiring league-specific payments and authorizations for registrations.

League Eligibility: Restricting league registration based on geographic location.

Game Scheduling: Preventing venue conflicts and adjusting schedules due to weather.

League and Team Management: Allowing administrators to modify league structures,
enforce team constraints, and provide league types to accommodate different sports and
participant groups, as well as managing limits on team numbers for leagues.

The system addresses several non-functional requirements as well:

Performance: Designed to support up to 500 concurrent users without degradation. Venue
scheduling will complete conflict checks within 3 seconds, and other key responses will
occur within 2 seconds for managers, officials, and players.

CSci 5801: Software Engineering I 6 of 12



SPORTS Design Document v.1

Safety and Security: Sensitive data is secured, and access is restricted based on user
roles. All transactions and updates involving sensitive information are authenticated.

Reliability and Scalability: The system aims to have 99.9% uptime and is modularly
designed to support the addition of new sports, fields, and league configurations without
major overhauls. It can expand to serve multiple cities if needed.

Usability: The interface will be user-friendly, supporting users with varying technical skills,
with clear instructions for registration, scheduling, and error handling for conflicts.

Business Rules Compliance: Enforces rules such as role-based permissions for league
creation, and automated reminders to update game results within set timeframes.

1.4 References

1) SPORTS System Requirements Specification Document
2) SPORTS Use Cases
3) SPORTS Specifications Document

1.5 Definitions, Acronyms, and Abbreviations

TBD - To be determined, an item which will be determined at a later date after more
information is acquired

SPORTS - System for Production Of Recreational Team Scheduling, acronym for the
application

2 Design Overview

2.1 Introduction

The SPORTS System adopts an object-oriented design approach to achieve modularity,
reusability, and scalability. The system architecture follows a client-server model that
allows users to interact through an online web interface, with the server handling data
processing, database interactions, and other backend operations. This model makes sure
that the system can handle multiple concurrent users, each accessing league
management, scheduling, and user account functions. To develop and document the
system, lucidchart is being used for diagramming the architecture, illustrating workflows,
and modeling various components of the system.

2.2 Environment Overview

The system will operate as a web-based application accessible via browsers. The
frontend system from the client will send inputs into the application server layer, which
works with the database layer and external services to send an output back to the client's
site.

CSci 5801: Software Engineering I 7 of 12



SPORTS Design Document v.1

2.3 System Architecture

2.3.1 Top-level system structure of SPORTS

The system consists of three primary modules connected through a main backend core,
which allows for the independent scaling of components.

2.3.2 League Management Subsystem

CSci 5801: Software Engineering I 8 of 12



SPORTS Design Document v.1

The League Management Subsystem handles team registrations, rule enforcement, and
regional eligibility verification. This consists of a League Manager interface, a group of
validators, a payment processor, and finally a database layer to hold relevant information.

2.3.2 Venue Management Subsystem

The Venue Management Subsystem coordinates if and when the venues are scheduled,
concession management, and the prevention of a venue being double booked.

2.4 Constraints and Assumptions

Constraints

- Role-Based Access Control: The system must implement role-based
permissions for players, team managers, umpires, Parks & Rec staff, and city
officials.

Design Accommodation: Access control will be implemented using a secure
authentication and authorization interface. Each role will have access only to
specific functionalities based on their responsibilities.

- Real-Time Scheduling: Venue scheduling must occur in real-time, with conflict
checks completed within 3 seconds.

Design Accommodation: Optimized algorithms and database interface queries
will be used to ensure fast conflict checking.

- Payment Processing and Refunds: Payment errors must be logged
immediately, with notifications sent to both users and admins.

Design Accommodation: Integration with a secure payment gateway will ensure

CSci 5801: Software Engineering I 9 of 12



SPORTS Design Document v.1

compliant handling of transactions. The system will have thorough error checking
in every place an error is possible, and return a frontend message to the user if
any errors are thrown.

- Integration with External Systems: The system must interact with external
scheduling software for seamless booking of fields.

Design Accommodation: A data gateway that will integrate with external
scheduling platforms will be created, ensuring compatibility and data
synchronization.

- Persistent Storage: Historical league data must be stored in a secure and
retrievable manner, even after the league is no longer active.

Design Accommodation: The system will use a given external database to store
and reuse information needed and necessary for all use cases of the site.

Assumptions

- User Hardware and Internet Access: Users have access to devices capable of
running modern web browsers and reliable internet connections.

Design Accommodation: The system will prioritize efficient data usage and
minimize the amount of calls back to the website for users on slower connections.

- External System Availability: External systems like payment gateways and
authorization are assumed to be reliable and available.

Design Accommodation: The system will implement fallback mechanisms and
error handling in case of external system downtime.

- Regulation Updates: It is assumed that venue managers and city officials will
input accurate and up-to-date regulations.

Design Accommodation: The system will include prompts for stakeholders to
review and update regulations regularly.

- User Training: Users will receive minimal training and will rely on the system’s
intuitive interface for guidance.

Design Accommodation: Usability testing will ensure the interface is intuitive,
with tooltips and contextual help provided for complex tasks.

3 Interfaces and Data Stores

3.1 System Interfaces

3.1.1 Scheduler Interface

The Scheduler Interface is used for managing league schedules, including game dates,
times, and venues. This is accessible by league admins and team managers via a
web-based or mobile GUI. The interface is responsible for the allowing of creation,
modification, and deletion of schedules. It also works with the notification subsystem t o
provide notifications to teams when a schedule is updated.

Input: Game details (teams, venue, date, time) and rescheduling requests.

Output: Updated schedule, conflict warnings, and notifications sent to teams.

Works with the Game Schedule Data Store to retrieve, update, and store schedule
information. Also interfaces with the Notification Subsystem to inform users about

CSci 5801: Software Engineering I 10 of 12



SPORTS Design Document v.1

schedule changes.

3.1.2 Authentication Interface

The Authentication Interface ensures secure access to the system by verifying user
credentials and roles. It provides a user-friendly login and registration GUI for players,
admins, and team managers. It includes a single sign on option for easy registration.

Input: Username, password, and 2FA token (if applicable).

Output: Authentication success/failure, user role (e.g., admin, player), or error messages
(e.g., invalid password).

Interacts with the User Database to validate credentials and retrieve user roles and
permissions.

3.1.3 Payment Interface

The Payment Interface facilitates secure processing of league registration fees, payments
for team-related expenses, and other financial transactions. Users (team managers,
players, or admins) interact with the payment module through a web-based GUI or mobile
app. Payment information, such as credit card details, is captured and securely transmitted
The interface also provides feedback, such as success or error messages, after processing
payments.

Input: Payment details (e.g., card number, expiration date, CVV, and amount).

Output: Payment status (successful, failed, or pending) and receipts.

Uses external payment gateways (e.g., PayPal, Stripe) via APIs to complete transactions.
Logs payment data into the Payment Data Store for auditing and reporting.

3.2 Data Stores

3.2.1 Game Schedule Data Store

This data store holds league schedules, including game dates, times, and venues. Stores
game schedules and supports scheduling conflicts resolution, and supplies information to
the Notification Subsystem for updates. Key Data Fields:

- Game ID
- Team IDs (home and away)
- Venue
- Date and Time
- Status (scheduled, rescheduled, completed)

4 Structural Design

4.1 Class Diagram

CSci 5801: Software Engineering I 11 of 12



SPORTS Design Document v.1

We decided to partition the class diagram into several smaller bits, focusing on specific
aspects of the software. For example, a diagram for a user, team, schedule, league, venue, or
ranking. This allowed us to hone in closer on specific parts of the system, while still focusing on the
overall large functionality through subsystems and top-level system diagrams.

4.2 Class Descriptions

4.3 Classes in the Schedule Subsystem

4.3.1 Class: User

• Purpose: To organize user accounts and what type of user they are so that they have the correct
permissions
• Constraints: None
• Persistent: Yes (should remain consistent unless someone edits it)

CSci 5801: Software Engineering I 12 of 12



SPORTS Design Document v.1

4.3.1.1 Attribute Descriptions
1. Attribute: type

Type: string
Description: specifies the type of user(i.e. Admin, city official, etc.)
Constraints: should be a valid user , can’t be null

2. Attribute: password
Type: string
Description: password of the user, keeps the user’s account safe
Constraints: should have at least one special character and one number and at least 8 characters
long, can’t be null

3. Attribute: name
Type: string
Description: name of the user
Constraints: can’t be null

3. Attribute: contact
Type: string
Description: contact information of the user
Constraints: should be a valid contact, can’t be null

4.3.1.2 Method Descriptions
1. Method: changePassword(password)

Return Type: boolean
Parameters: password(the user must know their current password to change it)
Return value: success or failure
Pre-condition: user is logged in
Post-condition: none
Attributes read/used: password
Methods called: User.getContact()

Processing logic:
While they are logged in, the User can change their password. They must first
input their current password before inputting their new password. The new
possword must have at least one special character and number and be at least 8
characters long. If the password is changed successfully, the system will send a
message to the contact information stating that the password has been changed
and return true. If it was not changed successfully, the system will send a message
to the contact information stating that someone tried to change the password and
return false.

Test case 1: Call changePassword(password) with valid current password and valid old password.
Expected output is: true

Test case 1: Call changePassword(password) with valid current password but invalid new
password. Expected output is: false

Test case 1: Call changePassword(password) with invalid current password and invalid new
password. Expected output is: false

Test case 1: Call changePassword(password) with invalid current password but valid new
password. Expected output is: false

2. Method: isAdmin()
Return Type: boolean
Parameters: none

CSci 5801: Software Engineering I 13 of 12



SPORTS Design Document v.1

Return value: true or false
Pre-condition: none
Post-condition: none
Attributes read/used: type
Methods called: User.getType()

Processing logic:
getType is called and isAdmin checks if the type is an admin and returns true if it is and false if it

isn’t.

Test case 1: Call isAdmin with a user who is an admin Expected output is: true

Test case 1: Call isAdmin with a user who is not and admin Expected output is: false
3. Method: getName()

Return Type: String
Parameters: none
Return value: name of the user
Pre-condition: none
Post-condition: none
Attributes read/used: name
Methods called: none

Processing logic:
getName is called and the name of the user is returned

Test case 1: Call getName with a user whose name is bill Expected output is: ‘bill’
4. Method: getType()

Return Type: String
Parameters: none
Return value: Admin, tournament official, umpire, team manager, or player
Pre-condition: none
Post-condition: none
Attributes read/used: type
Methods called: none

Processing logic:
getType is called and the type of the user is returned

Test case 1: Call getType with a user who is an admin Expected output is: ‘admin’
2. Method: getContact()

Return Type: string
Parameters: none
Return value: the contact of the user
Pre-condition: none
Post-condition: none
Attributes read/used: contact
Methods called: none

Processing logic:
getContact is called and the contact information of the user is returned

Test case 1: Call getContact with a user whose contact information is billy@gmail.com Expected
output is: ‘billy@gmail.com’

4.3.2 Class: Team

CSci 5801: Software Engineering I 14 of 12

mailto:billy@gmail.com


SPORTS Design Document v.1

• Purpose: To manage and contain all the players that are on the same team
• Constraints: must have at least one player
• Persistent: Yes (should remain consistent unless someone edits it)

4.3.2.1 Attribute Descriptions
1. Attribute: players

Type: list of User
Description: contains all the players on the team
Constraints: at least one player

2. Attribute: team_manager
Type: User
Description: the manager of the team
Constraints: can’t be null

3. Attribute: league
Type: League
Description: the league that the team is registered for
Constraints: can’t be null

4. Attribute: payment
Type: Payment
Description: contains the payment method of the team
Constraints: none

5. Attribute: wins
Type: integer
Description: the amount of wins the team has
Constraints: none

4.3.2.2 Method Descriptions
1. Method: getPlayers()

Return Type: User list
Parameters: none

CSci 5801: Software Engineering I 15 of 12



SPORTS Design Document v.1

Return value: a list of all the players
Pre-condition: none
Post-condition: none
Attributes read/used: players
Methods called: none

Processing logic:
getPlayers is called and the list of all the players is returned as a result

Test case 1: Call getPlayers with players = [bill, alec]. Expected output is: [bill, alec]
2. Method: addPlayer(User)

Return Type: boolean
Parameters: User - the player that is to be added to the team
Return value: success or failure
Pre-condition: none
Post-condition: none
Attributes read/used: players
Methods called: none

Processing logic:
addPlayer is called with a specific player. That player is then added to the list of players

Test case 1: Call addPlayer with a player, dave, with players = [bill, alec] Expected output is:
success and players = [bill,alec,dave]

3. Method: removePlayer(User)
Return Type: boolean
Parameters: User- the player that will be removed from the team
Return value: success or failure
Pre-condition: the user a player in the team
Post-condition: the user is not a player in the team
Attributes read/used: players
Methods called: team.getPlayers()

Processing logic:
removePlayer is called with a player in the team. Then getPlayers is called to ensure that
the player is in the team. Then the player is removed from the team.

Test case 1: Call removePlayer with parameter billy when players = [billy, alec]. Expected output
is: success and players = [alec]

Test case 1: Call removePlayer with parameter billy when players = [alec]. Expected output is: fail
and players = [alec]

4. Method: getTeamManager()
Return Type: User
Parameters: none
Return value: team manager
Pre-condition:there is access to the team
Post-condition: none
Attributes read/used: team_manager
Methods called: none

Processing logic:
The value of team_manager is returned for the team.

Test case 1: Call getTeamManager Expected output is: the value of team_manager
5. Method: setTeamManager(User)

Return Type: boolean

CSci 5801: Software Engineering I 16 of 12



SPORTS Design Document v.1

Parameters: User- the user to be the team manager
Return value: success or failure
Pre-condition: team exists
Post-condition: team_manager is set
Attributes read/used: team_manager
Methods called: none

Processing logic:
The specific team is accessed and the team_manager is set to the User that was passed in

Test case 1: Call setTeamManager with a valid user. Expected output is: success

Test case 2: Call setTeamManager with an invalid user. Expected output is: failure

6. Method: getLeague()
Return Type: League
Parameters: none
Return value: league
Pre-condition: the team exists and is registered for a league
Post-condition: none
Attributes read/used: league
Methods called:

Processing logic:
The attribut league is returned

Test case 1: Call getLeague Expected output is: the league object
7. Method: setLeague(league)

Return Type: boolean
Parameters: league - the user will specify which league to register for
Return value: success or failure
Pre-condition: team exists
Post-condition: league attribute is set to the inputted parameter
Attributes read/used: league
Methods called: none

Processing logic:
A league is taken in and the team is registered for the league when the league attribute is
set to the inputted parameter

Test case 1: Call setLeague with a valid league . Expected output is: success

Test case 1: Call setLeague with a invalid league . Expected output is: failure
8. Method: makePayment()

Return Type: boolean
Parameters: none
Return value: success or failure
Pre-condition: payment attribute must be complete
Post-condition: payment is made
Attributes read/used: payment
Methods called: payment.getCardNum, payment.getAmt, payment.setPaid

Processing logic:
The card number and amount to be paid is retrieved and the system uses the card to pay the
specified amount. Then the paid attribute in payment is set to true if the payment is a
success.

CSci 5801: Software Engineering I 17 of 12



SPORTS Design Document v.1

Test case 1: Call make Payment with the payment attribute completed Expected output is: success
and payment’s paid attribute is true

Test case 2: Call make Payment without the payment attribute completed Expected output is: failure
and payment’s paid attribute remains false

9. Method: addWin()
Return Type: boolean
Parameters: none
Return value: success or failure
Pre-condition: the team wins the game
Post-condition: attribute wins is incremented
Attributes read/used: wins
Methods called: none

Processing logic:
When the team wins a game, addWin is called and the team’s attribute wins is incremented
by one

Test case 1: Call addWins. Expected output is: wins+1
10. Method: getWins()

Return Type: integer
Parameters: none
Return value: wins
Pre-condition: none
Post-condition: none
Attributes read/used: wins
Methods called: none

Processing logic:
The value in wins is returned

Test case 1: Call getWins Expected output is: wins

4.3.3 Class: Schedule

CSci 5801: Software Engineering I 18 of 12



SPORTS Design Document v.1

• Purpose: To organize games for teams in each league at specific locations and days
• Constraints: None
• Persistent: Yes (should remain consistent unless someone edits it)

4.3.3.1 Attribute Descriptions
1. Attribute: league

Type: League
Description: ensures that every team in a specific schedule is in the same league
Constraints: should be a valid league, one offered by the organization

2. Attribute: tournament official
Type: User
Description: a User that officiates the tournament
Constraints: should be a valid user

3. Attribute: venues
Type: Venue list
Description: list of venues that support the league
Constraints: should be compatible with the league and its sport

4.3.3.2 Method Descriptions
1. Method: viewSchedule (league)

Return Type: Schedule
Parameters: league - the user will specify which league’s schedule they wish to view
Return value: schedule
Pre-condition: the league exists
Post-condition: none
Attributes read/used: league
Methods called:

Processing logic:
The system searches through the available schedules and returns the one with the specified league

CSci 5801: Software Engineering I 19 of 12



SPORTS Design Document v.1

Test case 1: Call viewSchedule with a specific league. Expected output is: the schedule for that
league

2. Method: editSchedule(password, league)
Return Type: boolean
Parameters: password-only admins may access this function with their password; league-the user
will specify which league’s schedule they wish to edit
Return value: success or failure
Pre-condition:the user is an admin and the league is valid
Post-condition: the schedule is changed
Attributes read/used: league, password
Methods called: User.isAdmin

Processing logic:
An admin calls the function with a specified league. The system checks if the user is an
admin with the passed in password. After confirming, the system find the correct schedule
and allows the user to make changes

Test case 1: Call editSchedule with admin password and valid league and edit an aspect of the
current schedule Expected output is: success

Test case 2: Call editSchedule with regular user password. Expected output is: failure

Test case 3: Call editSchedule with admin password but invalid league. Expected output is: failure

4.3.4 Class: League

• Purpose: To contain the teams within the league and the league’s information
• Constraints: None
• Persistent: Yes (should remain consistent unless someone edits it)

4.3.4.1 Attribute Descriptions
1. Attribute: teams

Type: Team list
Description: contains all the teams in the league
Constraints: at least one team

2. Attribute: schedule
Type: Schedule
Description: the schedule for the league
Constraints: none

3. Attribute: sport

CSci 5801: Software Engineering I 20 of 12



SPORTS Design Document v.1

Type: string
Description: the sport that the league is for
Constraints: should be a sport that the organization offers

4. Attribute: size
Type: integer
Description: the amount of teams that the league can support
Constraints: none

5. Attribute: type
Type: string
Description: the type of league (i.e. women, men, or co-ed)
Constraints: no duplicate types for each sport

4.3.4.2 Method Descriptions
1. Method: getTeams()

Return Type: Team list
Parameters: none
Return value: a list of the teams in the league
Pre-condition: none
Post-condition: none
Attributes read/used: teams
Methods called: none

Processing logic:
The values in the attribute teams is returned

Test case 1: Call getTeams. Expected output is: teams
2. Method: getSchedule()

Return Type: Schedule
Parameters:none
Return value: the schedule for the team
Pre-condition:none
Post-condition: none
Attributes read/used: schedule
Methods called: none

Processing logic:
The object of the attribute schedule is returned

Test case 1: Call getSchedule Expected output is: schedule
3. Method: getSport()

Return Type: string
Parameters: none
Return value: the sport
Pre-condition:none
Post-condition: none
Attributes read/used: sport
Methods called: none

Processing logic:
The value in the attribute sport is returned.

Test case 1: Call getSport with sport = ‘soccer’ Expected output is: ‘soccer’
4. Method: getSize()

Return Type: integer
Parameters: none

CSci 5801: Software Engineering I 21 of 12



SPORTS Design Document v.1

Return value: the size of the league
Pre-condition: none
Post-condition: none
Attributes read/used: size
Methods called: none

Processing logic:
The value of the attribute size will be returned.

Test case 1: Call getSize with size = 10 Expected output is: 10
5. Method: getType()

Return Type: string
Parameters: none
Return value: either women, men, or co-ed
Pre-condition: none
Post-condition: none
Attributes read/used: type
Methods called: none

Processing logic:
The value of type is returned

Test case 1: Call getType Expected output is: value of type (either women, man, or co-ed)
6. Method: addTeam(team)

Return Type: boolean
Parameters: team-the team that is to be added to the league
Return value: success or failure
Pre-condition: a new team wishes to join a league
Post-condition: teams is changed
Attributes read/used: teams
Methods called: none

Processing logic:
Teams will be checked to make sure the new team isn’t already in there and then it will add
the new team

Test case 1: Call addTeam with new team Expected output is: success and team is added to back of
teams

Test case 2: Call addTeam with team already in the league Expected output is: failure and teams
stays the same

7. Method: changeSize(newSize)
Return Type: boolean
Parameters: newSize-the new size of the league
Return value: success or failure
Pre-condition: the capacity of the league has changed
Post-condition: size is changes
Attributes read/used: size
Methods called: none

Processing logic:
Size is set to the newSize

Test case 1: Call changeSize with newSize = 30 Expected output is: success and size= 30

4.3.5 Class: Venue

CSci 5801: Software Engineering I 22 of 12



SPORTS Design Document v.1

• Purpose: To organize the venues that are available for specific sports as well as the information for
those sports
• Constraints: None
• Persistent: Yes (should remain consistent unless someone edits it)

4.3.5.1 Attribute Descriptions
1. Attribute: sports

Type:string list
Description: a list of sports that can be played at this venue
Constraints: none

2. Attribute: name
Type: string
Description:the name of the venue
Constraints: none

3. Attribute: city
Type: string
Description: location of the venue
Constraints: none

4. Attribute: field_num
Type: integer
Description: the specific field of the venue
Constraints: none

5. Attribute: alcohol
Type: boolean
Description:whether or not alcohol is allowed at the venue
Constraints: none

4.3.5.2 Method Descriptions
1. Method: getSports()

Return Type: sport list
Parameters: none
Return value: a list of the sports
Pre-condition: none
Post-condition: none
Attributes read/used: sports
Methods called: none

Processing logic:
The values of the attribute sports is returned

Test case 1: Call getSports. Expected output is: sports

CSci 5801: Software Engineering I 23 of 12



SPORTS Design Document v.1

2. Method: getCity()
Return Type: string
Parameters: none
Return value: city
Pre-condition: none
Post-condition: none
Attributes read/used: city
Methods called: none

Processing logic:
The value of the attribute city will be returned

Test case 1: Call getCity with city = ‘Plymouth’ Expected output is: ‘Plymouth’
3. Method: getName()

Return Type: string
Parameters: none
Return value: name
Pre-condition: none
Post-condition: none
Attributes read/used: name
Methods called: none

Processing logic:
The value of the attribute name will be returned

Test case 1: Call getName with name = ‘Lion’s Park’ Expected output is: ‘Lion’s Park’
4. Method: getFieldNum()

Return Type: integer
Parameters: none
Return value: the field number
Pre-condition: none
Post-condition: none
Attributes read/used: field_num
Methods called: none

Processing logic:
The value of the attribute field_num is returned.

Test case 1: Call getFieldNum with field_num = 2 Expected output is: 2
5. Method: alcohol()

Return Type: boolean
Parameters: none
Return value: true or false
Pre-condition: none
Post-condition: none
Attributes read/used: alcohol
Methods called: none

Processing logic:
The value of alcohol is returned

Test case 1: Call alcohol when alcohol = true Expected output is: true

4.4 Class in the Ranking Subsystem

4.4.4 Class: Rankings

CSci 5801: Software Engineering I 24 of 12



SPORTS Design Document v.1

• Purpose: To allow users to see the current rankings of different leagues
• Constraints: None
• Persistent: Yes (should remain consistent unless someone edits it)

4.4.1.1 Attribute Descriptions
1. Attribute: league

Type: League
Description: the specific league that the rankings are on
Constraints: should be a valid league, one offered by the organization

4.4.1.2 Method Descriptions
1. Method: sortTeams()

Return Type: Team list
Parameters:none
Return value: sorted list of teams
Pre-condition: league is valid
Post-condition: none
Attributes read/used: league, team, User
Methods called: league.getTeams, team.getWins

Processing logic:
The teams will be ordered based on their wins. Putting the team with the most wins in the
league first in the list and the one with the least amount of wins last. If there are multiple
teams with the same wins, the team that registered first will be placed first.

CSci 5801: Software Engineering I 25 of 12



SPORTS Design Document v.1

Test case 1: Call sortTeams. Expected output is: a sorted list of teams from highest win amount to
least

4.5 Class in the Team Subsystem

4.5.1 Class: Payment

• Purpose: To keep track of payment information and if payments have been made or not
• Constraints: None
• Persistent: Yes (should remain consistent unless someone edits it)

4.5.1.1 Attribute Descriptions
1. Attribute: cardNum

Type: string
Description: holds the card number for the payment
Constraints: must be a valid card

2. Attribute: amt
Type: double
Description: amount that is owed
Constraints: none

3. Attribute: paid
Type: boolean
Description: status of the payment
Constraints: none

4.5.1.2 Method Descriptions
1. Method: getAmt()

Return Type: double
Parameters: none

CSci 5801: Software Engineering I 26 of 12



SPORTS Design Document v.1

Return value: amount owed
Pre-condition: none
Post-condition: none
Attributes read/used: amt
Methods called: none

Processing logic:
The value in the attribute amt is returned

Test case 1: Call viewSchedule. Expected output is:
2. Method: setAmt(amount)

Return Type: boolean
Parameters: amount-how much is being paid
Return value: success or failure
Pre-condition: a payment is wished to be made
Post-condition: amount is set to a new amount
Attributes read/used: amt
Methods called: none

Processing logic:
The amount taken in is subtracted from the amt that is owed and the amt that is owed is
updated. If the amount taken in is more than the amt owed, set amt to 0.

Test case 1: Call setAmt with amount = 30 and amt = 30 Expected output is: success and amt = 0

Test case 2: Call setAmt with amount = 40 and amt = 30 Expected output is: success and amt = 0

Test case 2: Call setAmt with amount = 20 and amt = 30 Expected output is: success and amt = 10
3. Method: getCardNum(password)

Return Type: string
Parameters: password-the password of the owner of the payment method
Return value: card number
Pre-condition: a valid password is passed in
Post-condition: none
Attributes read/used: cardNum
Methods called: none

Processing logic:
The password is checked to see if it has the right access to the card number, if it does then
the card number will returned, if not 0000-0000-0000 will be returned

Test case 1: Call getCardnum with valid password Expected output is: cardNum

Test case 2: Call editSchedule with invalid password. Expected output is: ‘0000-0000-0000’
4. Method: setCardNum(cardNum)

Return Type: boolean
Parameters: cardNum-a valid card number
Return value: success or failure
Pre-condition: none
Post-condition: cardNum is set to a new cardNum
Attributes read/used: cardNum
Methods called: none

Processing logic:
The passed in parameter is checked to see if it is a valid card number and if it is then cardNum

will be set to it, if not false will be returned.

CSci 5801: Software Engineering I 27 of 12



SPORTS Design Document v.1

Test case 1: Call setCardNum with valid card number Expected output is: success and cardNum is
set to new card number

Test case 2: Call setCardNum with invalid card number Expected output is: failure
5. Method: getPaid()

Return Type: boolean
Parameters: none
Return value: true or false
Pre-condition: none
Post-condition: none
Attributes read/used: paid
Methods called: none

Processing logic:
The value of paid is returned

Test case 1: Call getPaid Expected output is: value of paid (either true or false)
6. Method: setPaid(status)

Return Type: boolean
Parameters: status-whether or not it has been paid
Return value: success or failure
Pre-condition:none
Post-condition: paid is changed
Attributes read/used: paid
Methods called: none

Processing logic:
Status is either true or false, if the payment has been made or not. Paid will be set to the
value of status.

Test case 1: Call setPaid with status = true Expected output is: success and paid = true

Test case 2: Call setPaid with status = false Expected output is: success and paid = false

5 Dynamic Model

5.1 Scenarios

Scenario: Concession Regulation

● The vendor requests approval of the sale of an item at a venue from the
system. The system will notify the vendor if approval is granted or rejected.

CSci 5801: Software Engineering I 28 of 12



SPORTS Design Document v.1

●

Scenario: Inputting Regulations

● An administrator adds or changes league regulations. The system will store
regulations in persistent storage and monitor changes made.

●

Scenario: Team Information

● User signs in and selects a league to join. The user then inputs their team’s info
and submits it to join the league.

CSci 5801: Software Engineering I 29 of 12



SPORTS Design Document v.1

●

Scenario: Making Payments

● The user registers for a league. Afterwards, the system asks for authorization
which is when the user uploads the required documents. Then the user will
make the payment.

●

Scenario: Updating Games

● The system monitors weather conditions and then notifies users if there is a
conflict. The user chooses a new date and the game is rescheduled

CSci 5801: Software Engineering I 30 of 12



SPORTS Design Document v.1

●

Scenario: Game Eligibility

● User registers the team for a league which causes the system to prompt the
user for location. The system will check that the region is available and
registers if successful

●

Scenario: Venue Conflict

● The user selects a league. The user then selects a time and venue from a list
which the system will check for conflicts. If none are found, the game is
scheduled.

CSci 5801: Software Engineering I 31 of 12



SPORTS Design Document v.1

●

Scenario: Manage teams

● The stakeholder goes into the app. They can create new constraints or modify
old ones applying to teams

●

Scenario: League Variety

● The user goes into the app, and the app should display a wide variety of sports
and leagues that are available.

CSci 5801: Software Engineering I 32 of 12



SPORTS Design Document v.1

●

6 Non-functional requirements

Performance Requirements
The system will be utilizing a database of users in order to ensure persistent storage of
data. Performance cannot be entirely determined by the system so updates within a
minute cannot be guaranteed. As the application becomes more mainstream, more
updates and changes can be made in the future to accommodate better real time updates.

Safety Requirements
Any sensitive data will be encoded using ciphers and keys that are only accessible to
administrators and users who need it. The administrator can add update banners that
notify users of game schedule changes or conflicts. In the future, the system will link to a
local weather service to tell weather without input. It will also notify users without manual
interference necessary.

Security Requirements
The system will automatically assign new users as players. This role can be changed via
an access code to gain more permissions such as to team captain. Data retention policies
will have due dates to notify administrators to ensure that the system is complying with
current policies. The system shall be able to automatically check for secure data retention
in the future and notify administrators if issue(s) are found.

Software Quality Attributes
The sports scheduling system will provide a user-friendly platform that connects leagues
across multiple cities. It will have an intuitive interface that allows easy scheduling and

CSci 5801: Software Engineering I 33 of 12



SPORTS Design Document v.1

management of sports events, with the ability to quickly add new sports or expand to new
locations. The system will be designed to handle increasing numbers of users, sports, and
leagues.

Business Rules
The system will implement role-based access control set by the administrators, restricting
league creation to Parks & Rec staff while enabling team managers to register and pay
fees. Umpires will be required to submit within 24 hours with notifications for missed
deadlines. Concession listings will require city official pre-approval and be scheduled
separately from game times. A built-in payment function will allow teams to request
payment plans or refunds, with automated processing to minimize manual intervention and
streamline the administrative workflow. The system will be able to handle larger venues as
well as a more diverse variety of concessions. A matching algorithm will automatically
place teams in leagues based on player availability and field resources, directing free
agents to teams needing members.

7 Requirements Traceability Matrix

Design Element Requirement Identifier’s

Concession Regulation Interface REQ-4.1.1, REQ-4.1.2, REQ-4.1.3

Persistent Storage REQ-4.2.1, REQ-4.2.2, REQ-4.2.3

League Registration Interface REQ-4.3.1, REQ-4.3.2, REQ-4.3.3

Payment Processing Interface REQ-4.4.1, REQ-4.4.2, REQ-4.4.3

Location Verification Module REQ-4.5.1, REQ-4.5.2, REQ-4.5.3

Game Scheduling Engine REQ-4.6.1, REQ-4.6.2, REQ-4.6.3

League Management Interface REQ-4.7.1, REQ-4.7.2, REQ-4.7.3

League Variations Feature REQ-4.8.1, REQ-4.8.2, REQ-4.8.3

Weather Monitoring and Rescheduling REQ-4.9.1, REQ-4.9.2, REQ-4.9.3

8 Appendices

Appendix A: Glossary of Terms
This section is for terms used in the Design.

● League Manager: An individual responsible for overseeing league operations, including
scheduling and compliance with regulations.

CSci 5801: Software Engineering I 34 of 12



SPORTS Design Document v.1

● Role-Based Access Control (RBAC): A system that restricts access based on user roles.
● Venue Scheduling: The process of assigning and managing game times and locations for

sports leagues.
● Concession Management: The regulation and administration of food, beverages, and other

amenities at sports venues.
● Payment Gateway: A service provider that processes secure financial transactions.
● Weather API: An external service used to monitor weather conditions and adapt game

schedules accordingly.

Appendix B: Class Diagram Key

This section provides a legend for interpreting the class diagrams included in the document.

● Solid Lines: Represent associations between classes.
● Dashed Lines: Represent dependencies between classes.
● Filled Diamonds: Represent composition relationships.
● Hollow Diamonds: Represent aggregation relationships.
● Arrowheads: Indicate directionality in inheritance or implementation.

Appendix C: Data Field Constraints

A summary of data field constraints applied throughout the system:

● Username: Must be unique, non-empty, and 3–30 characters long.
● Password: Must be at least 8 characters long, including one special character and one

numeric digit.
● Email: Must be a valid format (e.g., user@example.com).
● Date and Time: Must conform to ISO 8601 standards.

Appendix D: Use Case Summaries

Detailed summaries of the primary use cases covered by the SPORTS system:

1. Team Registration:
○ Actors: Team managers, players.
○ Goal: Register a team, pay league fees, and verify eligibility.
○ Key Steps: User authentication, league selection, payment processing.

2. Game Scheduling:
○ Actors: League admins, team managers.
○ Goal: Schedule games without conflicts, taking into account weather and venue

availability.
○ Key Steps: Select league, assign venue, notify stakeholders.

3. Weather Monitoring and Rescheduling:
○ Actors: League admins.
○ Goal: Automatically reschedule games based on adverse weather conditions.
○ Key Steps: Integrate weather API, notify teams of changes.

Appendix E: Error Handling

Explanation of error-handling mechanisms:

● Payment Errors:
○ Log errors immediately.
○ Notify the user and admin.
○ Provide the option to retry or request assistance.

● Schedule Conflicts:
○ Alert the admin of the conflict.

CSci 5801: Software Engineering I 35 of 12



SPORTS Design Document v.1

○ Suggest alternative times or venues based on availability.
● Authentication Failures:

○ Limit login attempts to three before locking the account for 15 minutes.
○ Notify the user of the failure and provide password recovery options.

Appendix F: Future Work

Recommendations for extending the SPORTS system:

1. Mobile Application: Develop a dedicated mobile app to enhance user accessibility.
2. Machine Learning Integration: Use AI to predict scheduling conflicts and optimize league

operations.
3. Expanded User Roles: Include roles such as spectators and vendors to broaden system

functionality.

CSci 5801: Software Engineering I 36 of 12


